

Remote Surveillance Technologies for Assessing Biological Threats

Stan Morain & Amy Budge Earth Data Analysis Center University of New Mexico

BTR 2004: Unified Science and Technology for Reducing Biological Threats & Countering Terrorism "Homeland Security: Toward Converging Partnerships Albuquerque, NM March 17-19, 2004

Agenda

- Overview of paper
 - Bio-threats defined
 - Elements of an NMGII

Illustration of capabilities

- Satellite Assets and ESMF
- Asthma
- HPS
- Recommendations

BTR Scope and Opportunities

- DHS & NMDHS Bio-threat Reduction Initiatives
 - Bio-Surveillance Program Initiative (BSPI)
 - DHS's Information Analysis & Infrastructure Protection Program (IAIP)
 - Homeland Security Working Group (HSWG)
 - Geospatial Data Acquisition Coordination Committee (GDACC)
 - Target Applications for NMGII
 - Respiratory & Infectious Diseases (Forecasting, Prevention & Mitigation)
 - Tracking Microorganisms, Plants and Animals (Food Security and Infrastructure Protection)
 - Hazardous, Toxic, & Nuclear Materials Transport (Public Safety, Evacuation Planning, & Risk Avoidance)

Elements of a New Mexico Geospatial Information Infrastructure (NMGII)

- National Assets
 - Satellite Resources
 - NSGIC
 - **NSDI**
 - FGDC
 - HSWG
 - National Map
 - Geospatial One-Stop)

- New Mexico Assets
 - RGIS
 - NMGIC
 - GISAC
 - **GDACC**
 - EDAC, UNM (Public Health)
 - LISA, NMSU (Animal health)

To Protect Our Homeland & Planet

Continuity of Operational Satellite Programs

*** GOES R-Series may be single or suite of satellites (distributed constellation)

BTR & National Applications

Carbon Management

Water Management

Agricultural Efficiency

Public Health

Homeland Security

Invasive Species

Energy Forecasting

Coastal Management

Ecological Forecasting

Aviation Safety

Disaster Management

Air Quality

EARTH SYSTEM MODELS 1. Modeling Framework **MAESTRO* / MAESTRA*** CLSM* NCEP-ETA* + "DREAM"

- 2. Candidate Adjunct Models NARAC / ERS **HOTMAC / RAPTAD Ecological Models (e.g. HPS) COAMPS***
- 3. Statistical models (e.g., NARA, NARISA)

Data

MONITORING & MEASUREMENTS

1. TRMM Data Products PR 3A-25.26 TMI 2A-12, 3A-11 TRMM 2B-31, 3B-31, #B-42,43 2. ASTER Data Products AST14, AST05,08 3. MISR Data Products MIS05,08,09 4. MODIS Data Products MOD04,08,09,11-17 5. *NPOESS

Predictions **Integrated System Solution**

DECISION SUPPORT TOOLS

- Enhancing RSVP capabilities
- Improving knowledge of vector ecology
- Improving NCEP-ETA model w/ DREAM inputs
- Improving DREAM inputs w/ NASA products
- Improving aerosol and smoke dispersion
 - models w/ NASA products
- Visualizations and animations of key environmental triggers

VALUE & BENEFITS

- 1. NASA assets feed DSS
- 2. Integrated NASA/CDC solution
- 3. Stimulate Wkfrc Dev w/ space products
- 4. Benchmark value of solutions
- 5. Expand user base for RSVP
- 6. Migrate RSVP-2 to **RSVP-3**
- 7. Provide quicker public health response
- 8. Refine quality of public health response

Reported Predictors/ Triggers Of Asthma

Respiratory Predictors

- 1. Urbanicity
- 2. Traffic density
- 3. Age
- 4. Gender
- 5. Temperature
- 6. Precipitation
- 7. Humidity

Respiratory Triggers

- A. Outdoor Environment
 - 1. Dust
 - 2. Pollen
- **B. Indoor Environment**
 - 1. Wall-to-wall carpet
 - 2. Cockroaches
 - 3. Stuffed toys

BTR/NASA Data Products

Tropical Rainfall Measuring Mission (TRMM)

- Precipitation Radar (3A-25) Monthly accumulated rainfall
- PR (3A-26) Accumulated surface rainfall
- TRMM Microwave Imager (2A-12) Surface rainfall & vertical structure
- **TRMM (3B-31) Monthly combined accumulated rainfall & vertical structure**
- Advanced Spaceborne Thermal Emission & Reflection Radiometer (ASTER)
 - (AST14) Digital elevation models
 - (AST05) Surface temperatures

- (AST07,09) Surface reflectance and radiance
- Multi-angle Imaging Spectroradiometer (MISR)
 - (MIS05) Aerosol and surface product

Moderate Resolution Imaging Spectroradiometer (MODIS)

- (MOD04) Aerosol product
- (MOD08) Atmosphere products (Aerosol properties, radiative energy fluxes)
- (MOD09) Surface reflectance, atmospheric correction, algorithms (Vegetation & Land cover, vegetation & land cover dynamics)
- (MOD11-17) Surface temperature, vegetation dynamics, land cover, fire, thermal anomalies

Digital Elevation Model/ Shaded Relief

DEM (Sandia Crest)

Digital elevation values (m asl)

				_		
2849	2851	2862	2874	2909	2928	2939
2837	2840	2856	2870	2888	2923	2935
2823	2831	2850	2864	2880	2916	2930
2809	2820	2842	2859	2873	2898	2924
2799	2809	2827	2853	2867	2883	2914
2795	2801	2815	2838	2860	2874	2890
2791	2797	2805	2823	2848	2864	2877

Area enlargement 30-m pixel

Terra/MODIS Land Surface Temp/Emissivity-Daily, 1-km

AZ/NM (MOD13A4) 16-Day Vegetation Index 1-km

ST. BULKO

TRMM/TMI-Rain Rate 11/12/03

TRMM/PR Surface Rain Rate 11/12/03

			40.0 N - 99.0 E		100.000
					10.0000
	s#	a Balanca (n tan		1.00000
	.	Data	values		0.100000
0.000000 0.000000 0.000000 0.8530956 0.9639078 0.8402221 0.8243989 1.1934031 0.5265099 0.5729122 0.7049646 1.3903062 1.1844442 0.8520256 0.0000000 0.5012648 0.0000000 0.3759604 1.6855812 0.6418092 1.0252297 1.2694094 0.6361052 1.1414816 1.0768880 0.0000000 1.1762154	0.000000 0.000000 0.000000 0.000000 0.000000 1.2837082 1.6880338 2.4318659 1.4500881 0.6731670 0.9746364 0.8414955 0.6529967 0.7000763 0.9300975 1.2766843 0.9005736 0.9000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.7284701 1.0518624	0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.4724401 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.7934005 1.0589039 0.5938889 1.0260763 0.7239761 1.0001078 1.2008274 0.6468488 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 1.1717046	0.7493871 0.000000 0.000000 0.5825910 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.277924 0.6276909 1.6296254 1.2565241 0.8924011 0.9138776 1.0111173 0.6192262 1.1221132 0.8239447 0.5415413 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000	2.6275146 1.2568434 0.8377122 0.000000 0.4286181 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.9028456 1.1281947 0.4813882 0.4720266 1.7361802 1.4852282 1.4995747 1.2919493 0.7593106 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000	

Temporal Visualization of Global Aerosol Migration

A World of Dust

Calm before the storm

0°Forward

Nadir

Saharan dust to Italy

Haze over China

Aral Sea

Dust Storm over New Mexico & Texas Aqua/MODIS 12/15/03

More BTR/NASA Products

Smoke

Carbon Monoxide

Sulfur Dioxide

Temperature Anomalies

Hantavirus Pulmonary Syndrome

Reservoir for Sin Nombre Virus

5500' 6000' 6500' 7000' 7500' 8000' 110-114 116-118 121-122 122-126 HPS Cases & Controls as a Function of Elevation % Frequency of HPS and Control Sites w/i NDVI Intervals

Data Flow and Delivery System

Federal and State Partnerships

Elements collaborate at minimal level with untested compatibility and interoperability; Gaps prevail; Architecture is incomplete

Closing Thought

"Human actions have become a dominant force [for] environmental change. Globalization has led to the introduction and spread of invasive species and infectious diseases with little understanding of the consequences...

"Achieving a mechanistic and predictive understanding [of changes] will require [spanning] large spatial and temporal scales, and transcending [many] levels of biological complexity (*National Science Foundation*, *NEON* Announcement, March '04. Page 4)."