

# Public Health Applications in Remote Sensing (PHAiRS)

Stan Morain Earth Data Analysis Center University of New Mexico <u>smorain@edac.unm.edu</u>

> NMGIC Spring Meeting Albuquerque, NM April 28, 2006

# Project Participants

| <u>UNM EDAC</u>                                                                         | <u>U of A Atmos. Sci.</u>                                                         | <u>Stake-holders</u>                                                                 |
|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Stan Morain<br>Amy Budge<br>Karl Benedict<br>Bill Hudspeth<br>Tom Budge<br>Gary Sanchez | Bill Sprigg<br>Brian Barbaris<br>Dazhong Yin<br>Slobodan Nikovick<br>Patrick Shaw | NM/AZ-DOH<br>NM/AZ-DEQ<br>Hospitals<br>AERES Corp.<br>Med Sci Ctr, TxTech<br>ABQ AQO |
|                                                                                         |                                                                                   |                                                                                      |

# Talking Points

- Atmospheric contaminants
- The DREAM--Dust Regional Atmospheric Model
  - Concept and domain
  - Components
  - Performance and parameter replacements
- Earth observation data assimilation
  - Concept and definitions
  - Candidates
  - Why it's not so simple
- Sample model run, data sets and improvements

# Particulate Matter Size Distribution & Their Related Biophysical Impacts





# Model Domain



- Domain center at (109°W, 35°N)
- Horizontal semistaggered Arakawa E grid
- Horizontal grid spacing 1/3 degree

# DREAM Has Two Main Parts

- An atmospheric modeling system
  - 32 model layers extending from the Earth's surface to 100 hPa in the vertical
  - In the x,y dimensions resolutions range from 0.1 degree to 1.0 degree lat. / lon.
- A dust concentration module
  - parameterizes both wet and dry deposition
  - Soil textures are specified by the NCEP/Eta model using
    - ZOBLER seven textural classes @ 1° resolution
    - The UNCEP/GRIDDED FAO/UNESCO soil units @ 2'res.
  - vegetation cover
  - Soil moisture
  - Surface atmospheric turbulence
  - Topography

# Modeled vs Observed Synoptic Patterns 12 Z 16 Dec 03



**DREAM** Simulation



#### **Observed Geopotential Height**





# Assimilation vs Fusion

- Assimilation: The process of replacing selected static parameters in an Earth system model with digital pixel values from Earth observation data sets to improve the model's performance and convert it into a more dynamic (forecasting) form without changing the model's intended purpose.
- <u>Fusion</u>: The process of including EO image products (at any of several levels of processing) into a GIS architecture in such a way that the datasets, both vector and raster, are geospatially registered at a specified scale. This usually requires subsetting, re-projection and rescaling of fused data.

# DREAM Replacements as of April '06

### Previously used data

- Soil Moisture: simulated using a land surface model
- Elevation: USGS 1 km terrain data
- Vegetation: Olson World Ecosystems 10-minute, ± 19 km resolution

•Aerodynamic Roughness Length predicted using 12 SSiB land cover types

## Data being evaluated

- AMSR-E soil moisture data
- SRTM 90 meter terrain data
- MOD12 Land Cover 1 km resolution
- Look-up table based on MOD12 land cover, 1 km resolution

# Replacing w/ Higher Resolution Elevation Data



# Level-1 (90m)SRTM Data for DREAM Domain Large voids have been filled using GTOPO30 Data; small ones w/ a 5x5 filter



# Steps in Assimilation

- Assess metadata & attributes of current model inputs and of possible EO inputs
  - Measurement units
  - x,y,z Resolution
  - Temporal frequency
  - Projection
  - File formats
  - Validity & accuracy
  - Error & error propagation
- Select EO inputs based on highest perceived benefit for enhancing model output
- Replace model input with EO data and compare model outputs
- Iterate with successive EO inputs
- Measure improvements at each stage and document overall performance improvements

# The Baker's Rack



Aims are to: (1) replace selected trays in the rack with regularly refreshed EO digital data from the "terrain." "surface conditions," and "atmospheric" parameters that drive DREAM; (2) improve model output without altering the validity of the model's original function; and (3) convert the model to a more dynamic forecast.

Calls for an experimental design

### Possible Experimental Design V&V each model run in each iteration & Benchmark

- MOD 12 Land Cover
- SRTM Elevation
- AMSR-E Soil Moisture
- Surface Roughness Length from MOD12
- MOD11 Soil Temperature
- AMSU-A Humidity

### Iteration III

| 1,2,3 | 2,3,4 | 3,4,5  | 4,5,6   |
|-------|-------|--------|---------|
| 1,2,4 | 2,3,5 | 3,4,6  |         |
| 1,2,5 | 2,3,6 | Altoge | ther 41 |
| 1,2,6 |       | mode   | el runs |

- Iteration I: Replace six parameters, 1 at a time (= 6)
- Iterations II: 2 parameters sequentially (= 15)
- Iteration III: 3 parameters sequentially (= 10)
- Iteration IV: 4 parameters sequentially (= 6)
- Iteration V: 5 parameters sequentially (= 3)
- Iteration VI: 6 parameters taken together (= 1)

Need to automate statistical analysis procedure

# New Mexico/Texas Dust Storm - Dec 2003



# Observed Visibility vs Modeled Dust Concentrations Dec. 15-16, 2003



Continuous Air Monitoring Stations

DREAM Baseline (no EO data included)

# Planned Replacements & Refinements

Now

- SRTM Level-1 90m Elv
- MOD12 Land Cover
- NCEP/ETA Hydrostatic
- NWS Humidity
- Soil Temperature
- NCEP Precipitation
- Aerodynamic Roughness

Later

- ASTER AST14 Elevation
- MOD15 LAI and FPAR
- NCEP/NMM Non-Hydro
- AMSU-A Humidity
- MOD11 Soil Temp
- TRMM 5-day Rain Map
- · ???

# Visualization of Candidate Replacements





# Comparison of 3 EO Products. B and C are Fused with A



(A) Head, Sea of Cortez, ©DigitalGlobe;
(B) MOD12 - Land Cover IGBP Class 16 "Barren or Sparsely Vegetated; (C) MOD
15 - FPAR fill class 253 - "Barren, desert, or very sparsely vegetated".

# TRMM PR 2A25 Surface Rain Rate 11/12/03



# TERRA/MODIS MOD11A1 Land Surface Temperature/Emissivity-Daily 1-km



# Comparison of DREAM Dust Concentrations at 20Z 15 Dec 03



Static Surface Inputs

EO Surface Inputs

# DREAM Performance Before & After EO Data Assimilation

| Metrics          | Wind        | Wind          | Temp.  | Definition                                                                                              |
|------------------|-------------|---------------|--------|---------------------------------------------------------------------------------------------------------|
|                  | Speed (m/s) | Direction (°) | (K)    | (M: modeled; O: observed)                                                                               |
| Mean<br>observed | 5.53        | 231.40        | 276.74 | $\frac{1}{N}\sum_{i=1}^{N}O_{i}$                                                                        |
| Mean             | 4.65        | 226.60        | 275.56 | $\frac{1}{N}\sum_{i=1}^{N}\boldsymbol{M}_{i}$                                                           |
| modeled          | 4.37        | 230.38        | 277.48 |                                                                                                         |
| Mean             | -0.88       | -4.80         | -1.20  | $\frac{1}{N}\sum_{i=1}^{N}(\boldsymbol{M}_{i}-\boldsymbol{O}_{i})$                                      |
| bias             | -1.16       | -1.02         | 0.72   |                                                                                                         |
| Mean             | 1.97        | 51.76         | 4.09   | $\frac{1}{N}\sum_{i=1}^{N}\left \boldsymbol{M}_{i}-\boldsymbol{O}_{i}\right $                           |
| error            | 2.03        | 47.85         | 2.67   |                                                                                                         |
| Agreement        | 0.74        | 0.74          | 0.71   | $1 - \frac{\sum_{i=1}^{N} (M_i - O_i)^2}{\sum_{i=1}^{N} ( M_i - \overline{O}  +  O_i - \overline{O} )}$ |
| index            | 0.75        | 0.76          | 0.95   |                                                                                                         |

Blue values = before EO Data Assimilation Red values = after EO Data Assimilation