From routine to extreme: flexible services oriented architectures for rapid public health information delivery

> Karl Benedict Sr. Research Scientist Earth Data Analysis Center University of New Mexico

Decision Making

- Decision making depends upon the timely availability of accurate information
 - The sooner information is in the hands of emergency responders, the more complete a picture of the situation is available
 - Rapidly developing situations are characterized by data of variable accuracy and currency
 - From a decision-making standpoint, information is more useful than data

Interoperable Components

- Information delivery resources usable for routine operation may be deployed in emergencies if designed for interoperability and flexibility.
 - Interoperability contributes to flexibility through minimization of development around custom interfaces
 - If systems are built of components with standard interfaces, those components are more easily combined to meet new challenges and needs

Pre-positioned Data

- Data collection and management does not happen quickly - certainly not quickly enough to respond to emergency situations if the infrastructure and existing data are not already in place
- Adoption of open interoperability standards maximizes the degree to which existing data sources may be used and reused

- Data Collections (databases, files, images)
- Data Services (interfaces to data collections)
- Processing and Analysis Services (products derived from data published as data services)
- Applications (human interfaces providing *information* to decision makers
- Connected to each other with service interfaces

- Data Collections (databases, files, images)
- Data Services (interfaces to data collections)
- Processing and Analysis Services (products derived from data published as data services)
- Applications (human interfaces providing *information* to decision makers
- Connected to each other with service interfaces

- Data Collections (databases, files, images)
- Data Services (interfaces to data collections)
- Processing and Analysis Services (products derived from data published as data services)
- Applications (human interfaces providing *information* to decision makers
- Connected to each other with service interfaces

- Data Collections (databases, files, images)
- Data Services (interfaces to data collections)
- Processing and Analysis Services (products derived from data published as data services)
- Applications (human interfaces providing *information* to decision makers
- Connected to each other with service interfaces

- Data Collections (databases, files, images)
- Data Services (interfaces to data collections)
- Processing and Analysis Services (products derived from data published as data services)
- Applications (human interfaces providing *information* to decision makers
- Connected to each other with service interfaces

- Data Collections (databases, files, images)
- Data Services (interfaces to data collections)
- Processing and Analysis Services (products derived from data published as data services)
- Applications (human interfaces providing *information* to decision makers
- Connected to each other with service interfaces

Common Service Interfaces

• Web - HTTP, HTTPS, FTP, SFTP

- Simple Object Access Protocol (SOAP) XML based messaging and remote procedure calls
- Representational State Transformation (REST) Simple URL-based request/response
- Open Geospatial Consortium (OGC)
 - Web Map Services (WMS) map images
 - Web Feature Services (WFS) Points, Lines, and Polygons with associated attributes
 - Web Coverage Services (WCS) Geospatial data (raster and other) as data

Many others ...

Examples

NASA PHAiRS Project

Delivering dust forecast and other remote sensing data to existing public health decision support systems

NM DOH EPHT Implementation

Developing the operational Environmental Public Health Tracking System for the state of New Mexico that also participates in the national EPHT network

111 W

Dust Forecast Run DREAM Model

III III

NOAA GFS

III III

III III

EDAC

III III

111 III

III III

WMS Client

Worflow Svc.

WMS Map Svc.

Data Retrieval Svc.

NM Vital Records

111 III

Key Questions

- Who will need access to information?
- What information will be needed?
- How will the information be delivered?
- What are the sources of that information?
- What are the *minimum* required restrictions on the distribution of data/information?

What can be done ahead of time to speed the delivery of information?

Resources

- SOAP Specification: W3C - <u>http://www.w3.org/2000/xp/Group/</u>
- REST Information: Wikipedia - <u>http://en.wikipedia.org/wiki/</u> <u>Representational_State_Transfer</u>
- OGC Specifications: Specifications Page - <u>http://</u> www.opengeospatial.org/standards

Acknowledgements & Contact Information

- The PHAiRS Project has been funded by NASA through their REASoN program
- The NM EPHT Implementation project has been funded by CDC through the NM Dept. of Health
- For additional information, contact Karl Benedict (<u>kbene@edac.unm.edu</u>, 505-277-3622 x234)

Additional Examples

- Developmental RGIS Imagery Viewer <u>http://rgis.unm.edu/mapper/index.html</u>
- HEALTHmap Global Disease Alert Map <u>http://www.healthmap.org/</u>

