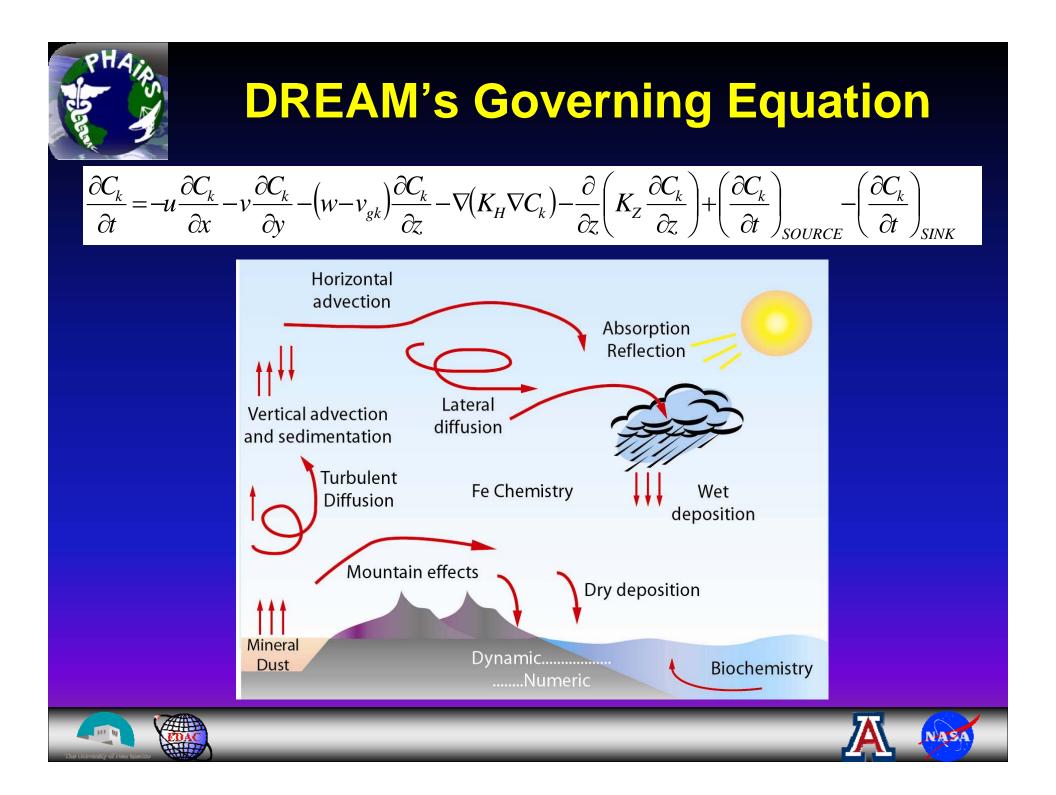


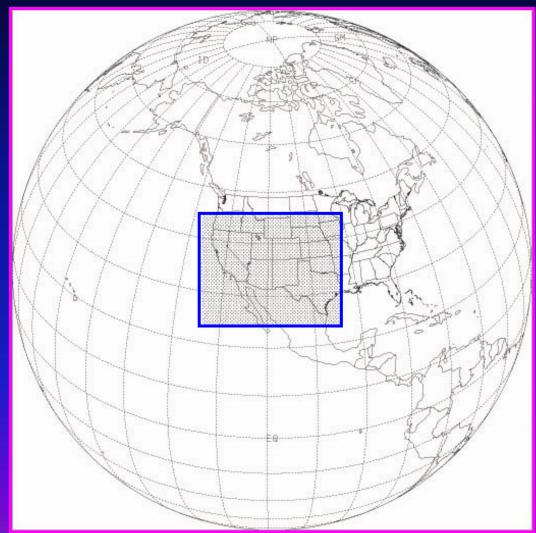
PHAIRS Project Overview

Stan Morain, PI Amelia Budge, Project Manager Earth Data Analysis Center University of New Mexico



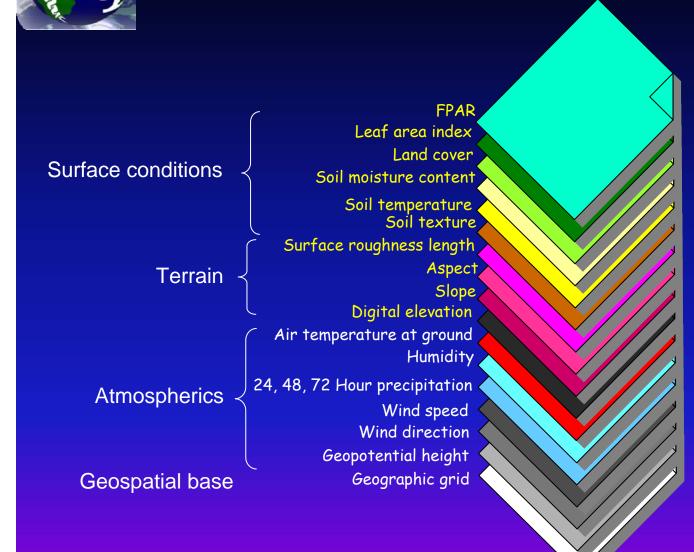
Public Health Applications in Remote Sensing (PHAiRS)

- Focus on SW, dust storms, respiratory diseases, and syndromic surveillance
- 3 thrusts
 - Assimilate EO data into DREAM as part of NCEP/Eta forecasting system
 - Measure incremental improvements to DREAM outputs as inputs to surveillance & decision support systems
 - Create collaborations with public health authorities to validate relationships between dust episodes and respiratory complaints



Model Domain

- Domain center at (109°W, 35°N)
- Horizontal semistaggered Arakawa E grid
- Horizontal grid spacing 1/3 degree


PHAiRS Approach

- Assimilate NASA Earth observations data into a regional dust model (DREAM) nested in the NCEP/Eta weather forecasting model to
 - simulate dust entrainment and dispersion patterns
 - replace traditional model parameters with actual measurements
 - improve dust forecasts by combining atmospheric and land surface measurements that influence health outcomes.
- Use air quality data to
 - verify & validate model outputs of dust episodes
 - transition modeled dust concentrations with air quality standards
- Develop forecast products for users
 - model output animations 24-36 hour regional forecasts
 - provide web interfaces for health care communities and authorities

The Baker's Rack

Aims are to: (1) replace selected trays in the rack with regularly refreshed EO digital data from the "terrain." "surface conditions," and "atmospheric" parameters that drive DREAM; (2) improve model output without altering the validity of the model's original function; and (3) convert the model to a more dynamic forecast.

Steps in Assimilation

- Assess metadata & attributes of current model inputs and of possible Earth observation inputs
 - Measurement units
 - x,y,z Resolution
 - Temporal frequency
 - Projection
 - File formats
 - Validity & accuracy
 - Error & error propagation
- Select EO inputs based on highest perceived benefit for enhancing model output
- Replace model input with EO data and compare model outputs
- Iterate with successive EO inputs
- Measure improvements at each stage and document overall performance improvements

DREAM Assimilations as of 9/30/07

<u>Previously used data</u>
Soil Moisture: simulated using a land surface model

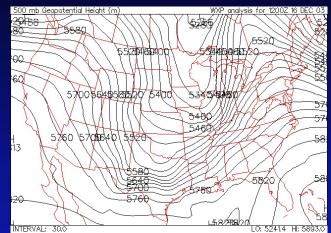
- Topography: USGS 1 km terrain data
- Vegetation: Olson World Ecosystems 10-minute (± 19 km resolution)
- •Aerodynamic Roughness Length predicted using 12 land cover types

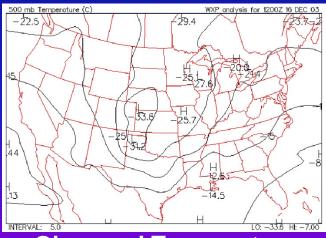
Assimilated Data

- AMSR-E soil moisture data
- SRTM 90 meter terrain data
- MOD12 Land Cover 1km resolution
- Look-up table based on MOD12 land cover, 1km resolution

Sample MOD-12 Image and Pixel Cover Type Designations for Categories 1-16

			F1
	X	Y	B1
	-115.5098527410	33.2672987437	7
	-115.5015067424	33.2672987437	16
	-115.4931607437	33.2672987437	16
	-115.4848147451	33.2672987437	16
	-115.4764687465	33.2672987437	16
	-115.4681227479	33.2672987437	16
	-115.4597767493	33.2672987437	16
	-115.4514307506	33.2672987437	16
	-115.4430847520	33.2672987437	16
	-115.4347387534	33.2672987437	16
	-115.4263927548	33.2672987437	16
	-115.4180467561	33.2672987437	16
	-115.4097007575	33.2672987437	16
	-115.5098527410	33.2589527450	7
A STATE OF A	-115.5015067424	33.2589527450	16
and the second	-115.4931607437	33.2589527450	16
	-115.4848147451	33.2589527450	16
	-115.4764687465	33.2589527450	16
	-115.4681227479	33.2589527450	16
	-115.4597767493	33.2589527450	7
	-115.4514307506	33.2589527450	16
	-115.4430847520	33.2589527450	16
at the second	-115.4347387534	33.2589527450	16

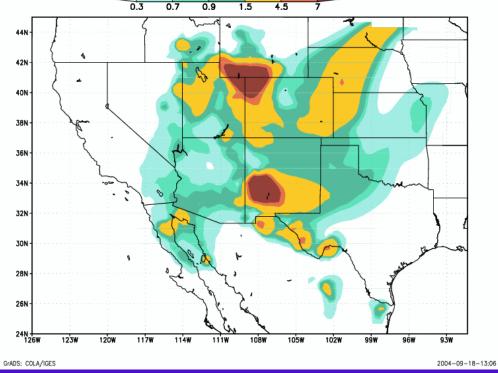



Modeled vs Observed Synoptic Patterns 12 Z on 16 Dec 03

DREAM Simulation

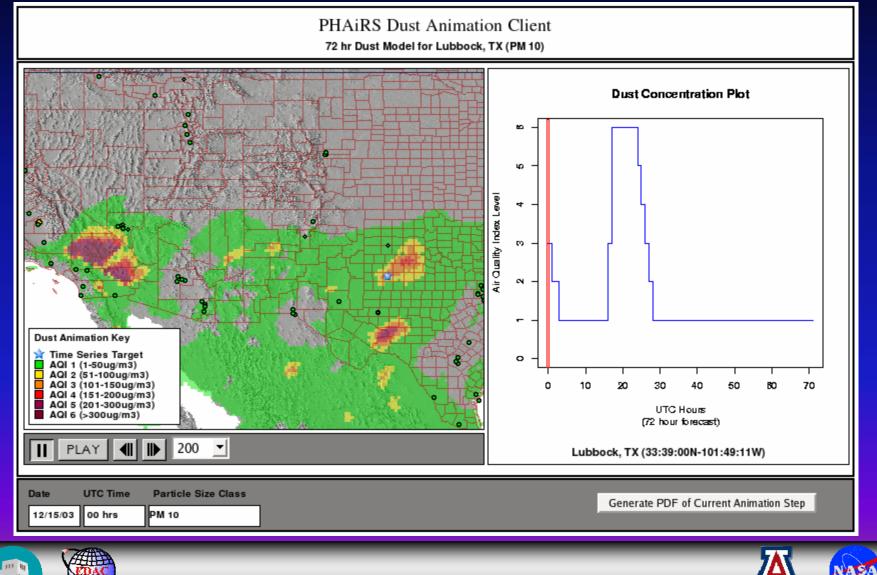
Observed Geopotential Height

Observed Temperature



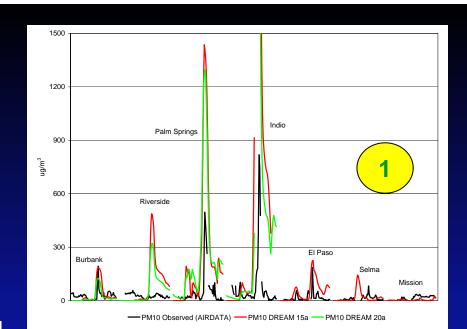
Observed Visibility vs Modeled Dust Concentrations Dec. 15-16, 2003

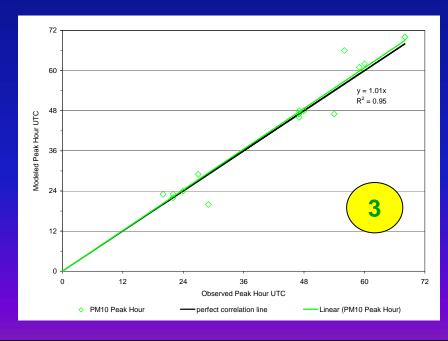
Continuous Air Monitoring Stations


DREAM Baseline (no EO data included)

PHAiRS Dust Animation

Comparison of DREAM Dust Concentrations at 20Z 15 Dec 03





Sample V & V Results

3500 $R^2 = 0.67$ \diamondsuit 3000 2 2500 \diamond $R^2 = 0.59$ 0000 (ng/m³) 1500 \diamond 1500 \diamond \diamond \odot \land 1000 $R^2 = 1.0$ 500 900 100 200 300 400 500 600 700 800 Observed (ug/m³) PM10 DREAM 15a PM10 DREAM 20a -Linear (perfect correlation line) Linear (PM10 DREAM 15a) Linear (PM10 DREAM 20a)

