

Environmental Sensing: An Evolving Program for Air Quality and Human Health

> Stan Morain Earth Data Analysis Center University of New Mexico Albuquerque, NM USA

Program Elements

- PHAiRS
- SDSWAS
- NASA RPC Pollen
- Interoperability
- SYRIS; Air Quality Authorities; Health Offices
- EPHTS & EPHTN
- EPA Workshop
- ICSU 2008 Grant Proposal

PHAiRS Research Team

- PI & Co-PI
 - -S. Morain (UNM)
 - -W. Sprigg (UA)
- Project Scientists
 - -A. Budge (UNM)
 - -K. Benedict (UNM)
 - -W. Hudspeth (UNM)
 - -T. Budge (UNM)
 - –D. Yin (UA)
 - -B. Barbaris (UA)
 - -S. Caskey (SNL)
 - -D. Holland (NASA-SSC)
 - -J. Speer (TTUHSC)

- Research Assistants
 - Gary Sanchez (UNM)
 - Beena Chandy (UA)
 - Chris Cattrall (UA)
 - Patrick Shaw (UA)
- Public Health Partners
 - City of Lubbock Dept of Health
 - Pima County Dept of Environmental Quality
 - Arizona Dept of Health Services
 - NM Dept of Health
 - UNM Health Science Center
 - ARES Corporation
 - ABQ Air Quality Office

Aims and Goals

- Focus on SW, dust storms, respiratory diseases, and syndromic surveillance
- 3 thrusts
 - Assimilate EO data into DREAM as part of NCEP/eta forecasting system
 - Measure incremental improvements to DREAM outputs as inputs to RSVP/SYRIS
 - Create collaborations with public health authorities to validate relationships between dust episodes and respiratory complaints

Particulate Matter Size Distribution & Their Related Biophysical Impacts

Model Domain

- Domain center at (109°W, 35°N)
- Horizontal semistaggered Arakawa E grid
- Horizontal grid spacing 1/3 degree

$\frac{\partial C_{k}}{\partial t} = -u \frac{\partial C_{k}}{\partial x} - v \frac{\partial C_{k}}{\partial y} - (w - v_{gk}) \frac{\partial C_{k}}{\partial z} - \nabla (\kappa_{H} \nabla C_{k}) - \frac{\partial}{\partial z} \left(\kappa_{Z} \frac{\partial C_{k}}{\partial z}\right) + \left(\frac{\partial C_{k}}{\partial t}\right)_{SOURCE} - \left(\frac{\partial C_{k}}{\partial t}\right)_{SINK}$

Modeled vs Observed Synoptic Patterns 12Z 16 Dec 03

DREAM Simulation red isolines = temperature blue isolines = geopotential height

Observed Geopotential Height

Observed Temperature

PHAID	Baseline and Replacement Parameters				
1.5 M	Baseline DREAM Parameters	Function/Purpose	EO Replacement Parameters		
	ECWMF medium-range weather forecast model	Initial & boundary conditions; Res. = 1°	NCEP/eta global forecast model		
	Olsen World Ecosystems	Land cover; Res. = 10min.	MOD-12 Res. = 1km		
	USGS terrain data	Res. = 1km	SRTM-30 Res. = 1km		
	Aerodynamic roughness length: predicted using 12 SSiB land cover types	Estimate dust entrainment potential	Look-up table linked to MOD-12 land cover		
	Soil Moisture: simulated using a land surface model	Res. = 2min.; categories reduced to texture categories	AMSR-E		

Assimilation vs. Fusion

Assimilation: The process of replacing selected static parameters in an Earth system model with digital pixel values from Earth observation data sets to improve the model's performance and convert it into a more dynamic (forecasting) form without changing the model's intended purpose.

Fusion: The process of including EO image products (at any of several levels of processing) into a GIS architecture in such a way that the datasets, both vector and raster, are geospatially registered at a specified scale. This usually requires subsetting, re-projection and rescaling of fused data.

Steps in Assimilation

- Assess metadata & attributes of current model inputs and of possible EO inputs
 - Measurement units
 - x,y,z Resolution
 - Temporal frequency
 - Projection
 - File formats
 - Validity & accuracy
 - Error & error propagation
- Select EO inputs based on highest perceived benefit for enhancing model output
- Replace model input with EO data and compare model outputs
- Iterate with successive EO inputs
- Measure improvements at each stage and document overall performance improvements

The Baker's Rack

	FPAR	
	Leaf area index	
Sunface conditions	Land cover	
Surface conditions	Soil moisture content	
	Soil temperature	
	Soil texture	
	Surface roughness length	
Terrain -	Aspect	
	Slope	
	C Digital elevation	
	(Air temperature at ground	
	Humidity	
Atmographaniag	24, 48, 72 Hour precipitation	
Annospherics	Wind speed	
	Wind direction	
	Geopotential height	
Geospatial base	Geographic grid	

Aims are to: (1) replace selected trays in the rack with regularly refreshed EO digital data from the "terrain." "surface conditions," and "atmospheric" parameters that drive DREAM; (2) improve model output without altering the validity of the model's original function; and (3) convert the model to a more dynamic forecast.

Barren Ground (Potential Dust Sources)

Olson World Ecosystems

MOD12Q1 Land cover reduced to binary format

Aerodynamic Surface Roughness (z₀) Controls Dust Entrainment

DN	Land Cover Category	Z _o Range (m)	Default z _o
8	Woody Savanna	0.10- 0.20	0.15
9	Savanna	0.03- 0.10	0.06
10	Grassland	0.03- 0.07	0.05
12	Cropland	0.04- 0.18	0.11
14	Crops/Natural Mosaic	0.10- 0.30	0.20
16	Barren/Sparse	0.00- 0.01	0.01
253	Fill	0.00	0.00

Observed Visibility vs. Modeled Dust Concentrations Dec. 15-16, 2003

Texas Continuous Air Monitoring Stations

DREAM Baseline (no EO data included)

DREAM Performance Before & After EO Data Assimilation

Metrics	Wind	Wind	Temp.	Definition
	Speed (m/s)	Direction (°)	(K)	(M = modeled; O = observed)
Mean observed	5.53	231.40	276.74	$\frac{1}{N}\sum_{i=1}^N O_i$
Mean	4.65	226.60	275.56	$\frac{1}{N}\sum_{i=1}^{N}{M}_{i}$
modeled	4.37	230.38	277.48	
Mean	-0.88	-4.80	-1.20	$\frac{1}{N}\sum_{i=1}^{N}(M_i - O_i)$
bias	-1.16	-1.02	0.72	
Mean	1.97	51.76	4.09	$\frac{1}{N}\sum_{i=1}^{N} \left \boldsymbol{M}_{i} - \boldsymbol{O}_{i}\right $
error	2.03	47.85	2.67	
Agreement	<mark>0.74</mark>	<mark>0.74</mark>	<mark>0.71</mark>	$1 - \frac{\sum_{i=1}^{N} (M_i - O_i)^2}{\sum_{i=1}^{N} (M_i - \overline{O} + O_i - \overline{O})}$
index	0.75	0.76	0.95	

Blue = before EO Data Assimilation

Red = after EO Data Assimilation

January 2007 AIRNow Data

 $N \approx 29K$ data points from 40 sites in the model domain

Magnitude Correlation - Jan 4-6, 2007 3000 y = 3.52x2500 DREAM pm_10 (ug/m3) R2 = 0.57 \diamond n = 512 2000 (8 sites) 1500 \diamond \diamond \Diamond \diamond \diamond \diamond 1000 \diamond \otimes \Diamond 500 perfect correlation line 0 200 1000 400 600 800 0 Observed PM_10 (ug/m3)

Indio, Palm Springs, El Paso, Mission AIRNow and DREAM Data

Indio, Palm Springs, El Paso, Mission AIRNow and DREAM Data

University of Texas-El Paso Station n = 970

PHAIRS

University of Texas-El Paso Station—24 hour rolling average

Dust Animation (PM-10) 72 Hr Outlook for Lubbock, TX

PHAiRS Dust Animation Client 72 hr Dust Model for Lubbock, TX (PM 10)

NASA

Incremental Improvements to Model Performance

Baseline Model Performance

University of Malta University of New Mexico University of Arizona

Model Performance After Assimilating Earth Observation Data

NASA / University of New Mexico University of Arizona World Meterological Organization

Model Performance Using NCEP/NMM Weather Forecast Model

NASA / University of New Mexico University of Arizona World Meterological Organization

