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Executive Summary 
Cardiovascular and respiratory diseases increase in populations exposed to airborne mineral dust. Sand 

and dust storms that entrain and carry particles to unsuspecting populations are also a hazard to air and 
ground transportation, spread bacteria and toxic materials mixed with the soil, and affect weather and cli-
mate through radiation and condensation processes. 

NASA Earth Science support for “Public Health Applications in Remote Sensing” demonstrates that using 
MODIS products greatly improves sand and dust storm simulations and forecasts. The current project also 
helps narrow the field of potential remote sensing products that could map the three-dimensional character-
istics of dust clouds over the landscape. Current capabilities developed through PHAiRS in simulating and 
forecasting airborne particulates have led public health and air quality offices in the states of New Mexico 
and Arizona to reevaluate their assessment of the emerging technology. Today, these offices participate 
actively in PHAiRS, testing and designing products and providing a beacon for future research. 

The tools developed herein are mindful of the needs by public health services. Every component is based 
on current obligations of government. The simulation and forecast models are driven by the operational 
weather forecast models of the U.S. National Weather Service. Weather data and analyses are provided in 
real time through the national and international operational services of the World Weather Watch, the Euro-
pean Centre for Medium-Range Weather Forecasting, and the U.S. National Weather Service. Remote 
sensing and data products from the A-Train are provided by NASA and partners. State agencies responsible 
for monitoring the region’s airshed or for public health surveillance and warnings, and other departments of 
environment, air quality, and health services, provide the ultimate test of new applications for remote sens-
ing products assimilated into air quality models. 

PHAiRS products are being validated against several measures of airborne particulate matter obtained 
from both satellite sensors and ground-based monitors and from in-situ samplers of PM10 and PM2.5. Dust 
model outputs are evaluated also against observed and modeled weather variables. These verification and 
validation (V&V) studies show marked improvement of PM10 and PM2.5 concentration simulations and fore-
casts over the first three-and-a-half years of the project, principally due to improvement of source identifica-
tion using advanced MODIS products. These studies also point out highly desirable future directions for veri-
fication (more speciation of particles and use of ground- and space-based LIDAR) and of study and product 
development (higher space and time resolution of surface landscape characteristics and model product out-
puts). 
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1.0 Introduction 
1.1 Importance of dust in human 
health 

Everyone’s health is impacted by exposures to 
microscopic minerals, chemical particulates, by 
organisms bonded to air particles, and by toxic 
gases (Figure 1). Many of these constituents are 
infectious and can become contagious; others are 
patient-specific. For example, ozone (O3) is a 
molecule that can lead to chronic asthma; viruses 
lead to influenza; bacteria lead to intestinal prob-
lems; and pollen leads to hay fever. Dust and 
smoke particles and industrial emissions in the 
PM10 to PM2.5 micron (μm) range contribute di-
rectly to respiratory health responses and serve 
as carriers for respirable viruses and bacteria 
(Kuehn, 2006). 

 

 
Figure 1. Particulate size distribution and related 
biophysical impacts. Source: Kaiser, 2005 Sci-
ence 307, p. 1859. 

One of the challenges for integrating satellite 
Earth observations into human health practice is 
to demonstrate that these data improve model 
predictions of dust levels that could trigger respi-
ratory responses. The body of medical and epi-
demiological knowledge linking dust and smoke to 
health responses is growing rapidly (Pope, 1989, 
2004; Schwartz and Dockery, 1992; Dockery et 
al., 1993; Pope et al., 1995; Griffin, 2007; National 
Research Council and Institute of Medicine, 
2007). Through these linkages, it is increasingly 
clear to science and government that satellite ob-
servations can play a prominent role in forecast-
ing short term weather episodes, and longer-term 
environmental changes that cycle over several 
human generations. Earth system scientists are 
modeling complex biological, chemical, and 
physical processes at the ecosystem level, and 

finding quantitative measures for tracking ecosys-
tem health over regional domains. 

Another challenge is for medical science to ex-
tract from this knowledge the consequent flow of 
pathogens and chemicals through airborne 
mechanisms, and to translate findings into action-
able human health interventions for populations at 
risk. This challenge implies adding health-care 
professionals into efforts that merge environ-
mental surveillance with human health surveil-
lance. Effective public health surveillance requires 
an appreciation of natural processes that impact 
environments and that could impose secondary 
impacts on exposed populations. Rewards will be 
realized when health care providers and health 
authorities are included in collaborative efforts 
with Earth scientists. 

While the medical community recognizes the 
adverse effects of PM10 and PM2.5 in patients with 
respiratory conditions (Pope, 2004), they lack re-
liable information for forecasting dust storms so 
that public alerts can be issued. Respiratory dis-
eases and syndromes typically are monitored by 
surveillance systems consisting of electronic da-
tabases into which data are entered and ac-
cessed by doctors and clinicians. But these sys-
tems do not provide enough information to issue 
public warnings in advance of a dust event. This 
technological gap is accented by the high num-
bers of deaths that could be exacerbated by dust 
and aerosols. Table 1 lists the world’s five leading 
causes of death. Three of these include some 
deaths that are actually caused by declining air 
quality and/or dust episodes, but for which there 
is no clinical confirmation of dust involvement. 

Table 1. Leading causes of death, worldwide (es-
timated), 2002. Deaths reported in cardiovascular, 
infectious and parasitic, and chronic lung catego-
ries include those actually induced by dust. 
Source: Centers for Disease Control and Preven-
tion, 2005. 

Cause of Death Est. # (%) of Deaths 

Cardiovascular 16.73M (29%) 

Infectious & Parasitic 14.86M (26%) 

Malignant neoplasms 7.121M (12%) 

Violence/injuries/ 

accidents/suicides 
5.168M (9%) 

Chronic lung 3.02M (6%) 
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Box 1 summarizes a few of the social and eco-
nomic costs related to asthma and myocardial 
infarction (MI) in the United States.  

Box 1: Health Costs and Respirable Particu-
lates 

Economically, there is ample evidence that 
respirable particulates result in costly health ef-
fects. Asthma and MI are among these. Asthma is 
a progressive disease that afflicted 20M Ameri-
cans in 2003 (American Lung Association, 2005). 
It is a chronic disease, especially in arid and 
semi-arid areas of the U.S. (ca. 25% of the do-
mestic land area). Between 1980 and 1994, the 
prevalence of asthma in the U.S. increased 75%; 
in children under 5, it increased 160%. In 2003 
there were 12.7M physician office visits and 1.2M 
outpatient department visits related to asthma 
(CDC, 1998). Direct health care costs currently 
exceed $11.5B annually, including $5B in pre-
scription drugs. Indirect costs (lost productivity) 
add another $4.6B (Myers, 2006). Annual treat-
ment costs in 2003 were over $4,900 per asth-
matic. From the health and health care cost per-
spectives, there is a strong argument for forecast-
ing outdoor dust and ozone environments based 
on time series Earth observations of dust epi-
sodes. 

Medically, the epidemiology connecting declin-
ing air quality and respiratory diseases in desert 
regions is poorly understood; but, patterns of ris-
ing health care costs are agreed in the health 
communities-of-practice to be associated with 
rising levels of atmospheric contaminants. Eco-
nomic studies in the environment and health sec-
tor provide adequate stimulus for investing in 
quantitative environmental measurements that 
reduce medical care costs and improve air quality 
that someday will reduce chronic diseases (cf, 
Ackerman, 2002; Landrigan et al., 2002; Pear, 
2003; Massey and Ackerman, 2003; Jerrett et al., 
2003; and, Davies, 2005). 

1.2 PHAiRS integrated system solution 

 
Figure 2. Plan for inserting public health into 
NASA’s integrated system solution (ISS).This is 
the solution proposed by the PHAiRS project 
team for verification and validation. 

PHAiRS has three parallel thrusts. The first 
assimilates satellite observations from MODIS 
Terra and other sources into the Dust Regional 
Atmospheric Model (DREAM). DREAM is nested 
within the National Centers for Environmental 
Prediction (NCEP/eta) weather forecasting model, 
which is a numerical model driven by both satel-
lite and in-situ atmospheric measurements. The 
aim of PHAiRS is to: (a) verify that advanced sat-
ellite image data from NASA sensors can replace 
terrain parameters from traditional non-satellite 
sources, or from earlier (coarser resolution) satel-
lite sources; and, (b) validate that parameter re-
placements lead to more reliable model forecasts 
of dust episodes. 

The second is to optimize DREAM model out-
puts by iterating model inputs with a variety of 
satellite products and assessing incremental im-
provements. The questions of greatest interest 
are: (a) how well, and with what degree of sensi-
tivity, can NCEP/eta combined with DREAM fore-
cast dust lifted from a landscape? (b) how well 
can this combined model simulate the speed and 
direction of moving dust clouds?; (c) can medi-
cally sound evidence be generated that couples 
dust episodes to documented respiratory health 
responses at the population level?; and (d), can 
areas affected by dust clouds be forecasted in a 
timely fashion to alert health officials and popula-
tions at risk? 

The third thrust is to establish collaborative re-
lations with public health authorities to test 
whether there are statistically valid relationships 
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between dust episodes and increased respiratory 
complaints. This is a difficult task in the United 
States because public health authorities are dis-
tributed throughout all levels of government, and 
because standardized record keeping is not man-
datory within or between these levels. Further-
more, patient confidentiality makes it impossible 
to know the geospatial coordinates behind any 
given record. 

Ultimately, the goal of PHAiRS is to improve 
public health decision support systems that can 
evolve toward operational status for the next gen-

eration of space-based sensing. The National Po-
lar-orbiting Environmental Satellite System 
(NPOESS) is scheduled for launch in the 2010 
timeframe. It will consist of several platforms car-
rying operational versions of NASA’s current ex-
perimental sensors. The PHAiRS project is help-
ing to build the scientific and technological under-
pinnings of these near-future capabilities, and 
testing them with appropriate public health user 
communities. 

 
1.3 Activities leading to V&V report 
Table 2. Milestones in PHAiRS tasks. 

Activity Calendar Quarters Beginning March 2003 

 1    2    3    4    5    6    7    8    9    10    11    12    13    14    15    16 

Baseline pre-PHAiRS DREAM 
performance         

Assimilate EO products into 
DREAM                              

V&V outputs against dust obser-
vations                                                         *   

Iterate model runs w/variety of 
EO data; Initial Benchmark                                                   

Develop Web client/Start AIR-
Now, etc.                                                                     

Statistical analyses & forecasts                                                                               

Engage user communities                                                       

User training workshops                                                                                               

Submit V&V Report                                                                                      

Final Benchmark Report …………………………………………… ……………              

=Annual Reviews;  =Initial Benchmark Report and V&V Report;   Projected; 

= 4th Projected Annual Review; Final Review in 2008 not shown but scheduled for March 2008. 

 

1.4 Initial benchmark results from 2005 
The initial benchmark report to NASA (Morain 

and Sprigg, 2005) showed the fundamental socio-
economic and political importance that dust storms 
play in human health, and how Earth observations 
will play significant roles in future public health ser-
vices. 

When the operational National Weather Service 
forecast model was modified to accommodate a 

dust entrainment process (i.e., DREAM), meteoro-
logical variables were well simulated and predicted, 
especially after experimental satellite observations 
were assimilated. 

Model comparisons showed that modeled mete-
orological fields, both surface and 500 millibar lev-
els, were in agreement with measured observa-
tions. The modeled vertical profiles of wind speed, 
wind direction, temperature, and specific humidity 
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matched the observed profiles. Statistical evaluation 
of the modeled and observed surface winds and 
temperatures showed the model performed rea-
sonably well in reproducing the measured values. 

The MOD12 barren ground assimilation had a 
much larger influence on modeled dust concentra-
tions than on meteorological fields. The peak hour 
correlation was least affected by the change. How-
ever, major gains were made in modeling the mag-
nitude and duration of near-surface high dust con-
centrations. The enhanced model predicted accu-
rately the order of magnitude of the dust storm 
event at almost all locations in the model domain. 

2.0 V&V Methods and Results 
In the integrated system solution, verification and 

validation are tied to uncertainties in the data and 
product inputs, assumptions in the processing 
steps, and interpretation of the outputs. Some of 
these are specific and measurable; others are 
known but not measurable; and still others are sus-
pected and require further definition. Aerosol optical 
depth/thickness (AOD/AOT) is an example of the 
latter. It does not appear that these data will be use-
ful in model verification other than being another 
qualitative measure for comparison. However, if 
work at The University of Arizona with speciated 
PM2.5 is successful, these data may be more cor-
rectly compared to model output. 

2.1 Pre-PHAiRS DREAM performance 
The pre-PHAiRS baseline DREAM/eta model has 

been verified and validated over the Mediterranean 
and North Africa by Nickovic et al. (2001); Nickovic 
et al. (2004); and Perez et al. (2006). The Nickovic, 
et al. papers made qualitative comparisons of the 
horizontal plume of a Saharan dust event. Perez et 
al. compared observations of a 17-day Saharan 
dust event that affected the western Mediterranean 
in June 2002. Intensive LIDAR observations at Bar-
celona (Spain) and sun-photometer data from two 
stations located along the dust plume (El Arenosillo, 
Spain; Avignon, France) were used to examine ver-
tical structure and optical properties, and to evalu-
ate DREAM performance. Evaluations were per-
formed also to show the dust horizontal spread and 
vertical structure simulated by DREAM, as ob-
served by SeaWiFS and as measured by LIDAR 
and sun photometers in the region. Figures 3 
through 7 show the horizontal spread and vertical 
structure of dust plumes originating in the Sahara. 
In Figure 3 images from SeaWiFS were compared 
visually to DREAM dust loading maps. Agreement 
between the two patterns is encouraging. There is 
also encouraging agreement between the modeled 
vertical structure and the observed vertical profiles 
over Barcelona (Figure 4). 

                     

   
Figure 3. Horizontal spread of a Saharan dust storm. SeaWiFS Images and modeled dust loading and winds 
at 3000m. (Left, top). SeaWiFS image; (left, bottom) DREAM output for 14 June, 2002. (Right, top) SeaWiFS 
image; (right, bottom) DREAM output for 18 June, 2002 (Perez et al., 2006). 
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Figure 4. Vertical structure of a Saharan dust storm over Barcelona, Spain, 18-19 June, 2002. (Left): LIDAR 
measurements. Dark blue columns indicate no measurements on the range corrected 1064nm signal (arbi-
trary units; temporal resolution is 60 sec.); (Right) DREAM modelled vertical dust concentration (Perez et al., 
2006).

Figure 5 compares modeled and observed 
Aerosol Optical Depth (AOD) over Arenosillo, 
Spain. Figure 6 shows LIDAR vertical profiles of 
measured extinction coefficients at 1064nm and 
532nm compared to modeled results over Barce-
lona, Spain. In general, the modeled profiles from 
three parameterizations designated G8 and D8 

are in good agreement with observations, but 
show a tendency to over-predict in the upper lev-
els of the dust plume. Note that LIDAR profiles 
may contain error-bars of 30 percent due to the 
assumption of a constant LIDAR ratio in the pro-
file.

  
Figure 5. Modeled vs observed Aerosol Optical Depth (AOD) for G8 (left) and D8 (right) at El Arenosillo, 
Spain (Perez et al., 2006). 
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Figure 6. Comparisons of modeled and observed vertical profiles of the extinction coefficient for M4, G8 and 
D8 over Barcelona, Spain. (left) 532nm on June 17, 2002 between 13:00 & 13:35 hrs; (center) 1064nm on 
June 19, 2002 between 15:38 & 16:08 hrs; (right) 1064nm on June 28, 2002 between 11:19 & 11:49 hrs 
UTC (Perez et al., 2006). 

   

Figure 7. Mediterranean dust transport on 12 January 2003. (Left), Satellite image; (right), DREAM output 
(Nickovic et al., 2004). 

Passive satellite sensors only show horizontal 
2-dimensional features of dust plumes that often 
remain undetected over continents because sen-
sors cannot distinguish easily between the color 
of atmospheric aerosols and surface background 
reflectance especially in arid and semi-arid envi-

ronments. Sun-photometers deliver column inte-
grated results with no distinction of layered aero-
sols or particulates. On the other hand, deposition 
or surface concentration data involve close-to-
ground characteristics of the dust process. 
Ground based LIDAR complements other meas-
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urements and depicts dust structure to allow ver-
tical model validation, but deposition or air sam-
pling that yields quantitative measurements of the 
airborne dust is the most difficult test for model 
validation. This type of validation has been per-
formed by the PHAiRS team for this V&V report. 

2.2 Performance-PHAiRS domain 
Verification and validation of DREAM perform-

ance over the PHAiRS domain are based on sta-
tistical measures that compare surface level dust 
(PM10 and PM2.5) concentrations recorded at par-
ticulate air quality sampling sites. Few have at-
tempted such rigorous tests. 

DREAM was adapted for the PHAiRS model 
domain centered at (109ºW, 35ºN). It covers the 
Southwest US and its surrounding areas (Morain 
and Sprigg, 2005). Table 3 lists the data sets and 
general properties upon which the model is 
based. 

Table 3. Data sets employed to V&V baseline 
PHAIRS DREAM/eta domain performance. See 
Nickovic et al., 2001; Zobler, 1986; and Cosby et 
al., 1986 for details. 

Data Set Purpose/Properties 

ECWMF medium-
range weather fore-
cast  

Initial & boundary con-
ditions; Res. = 1° 

NCAR monthly SST 
Sea surface temp.; 
Res. = 1° 

USGS terrain data Res. = 1km 

Olsen Wld Ecosysts1 
Land cover; Res. = 
10min.; Dust categories 
= 8, 50, 51, 52 

FAO Wld Soil Map2 
Res. = 2min.; 134 
categories reduced to 
Zobler/Cosby catego-
ries for soil texture 

 

As an initial test of the model’s performance, 
modeled meteorological fields were evaluated 
against measurements and analyses obtained 
from surface synoptic, surface Meteorological 
Aerodrome Report (METAR), and upper-air ra-
diosonde reports. The modeled dust field patterns 
and dust concentrations were compared with sat-

ellite images, measured visibility distributions, and 
the surface PM2.5 and PM10 observations from 
Texas Commission on Environmental Quality 
(TCEQ) and the US Environmental Protection 
Agency (EPA) Air Quality System (AQS). Graphi-
cal measures, such as pattern comparison, site 
against site time series vertical profile compari-
son, and statistical metrics, were used (Yin et al., 
2005). 

Table 4 lists the performance statistics for 
modeled surface wind and temperature for a De-
cember 15-17, 2003 dust storm over New Mexico 
and Texas. The modeled wind, temperature, and 
humidity profiles were verified against sounding 
data. The modeled meteorological fields were 
compared against analyses using observational 
data. These comparisons showed that DREAM 
performed well in forecasting meteorological pa-
rameters. 

Table 4. Performance statistics of modeled sur-
face wind and temperature. 

Metrics Wind Sp 
(N=31967) 

Wind Dir 
(N=31968) 

Temp 
(N=37094)

Mean Obs 5.53 (m/s) 229.96° 276.30 K 

Mean modeled 4.60 (m/s) 227.83° 275.21 K 

Mean bias -0.93 (m/s) -2.14 -1.11 K 

Mean error 1.98 (m/s) 50. 52° 4.02 K 

Norm. mean 
bias (%) -16.82 -9.93 -0.40 

Norm. mean 
error (%) 35.75 21.97 1.46 

Fract. bias (%) -0.13 -0.01 -0.004 

Frac. error (%) 0.41 0.30 0.02 

Agrmt index 0.73 0.74 0.73 

 

Figure 8a compares DREAM dust concentra-
tions at 20Z with a GOES satellite image (Fig. 8b) 
acquired at 20:26Z on Dec 15, 2003 and a visibil-
ity analysis interpolation from ground observa-
tions taken at 20z (Fig. 8c). The comparison 
shows that themodeled dust concentration pattern 
is similar to the observed pattern, but there are 
significant differences with respect to details.
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Figure 8. (Left), DREAM modeled dust concentration; (center), GOES 12 satellite image; (right) Measured 
visibility in miles (no observational data in the white areas).

Table 5 lists the performance statistics of mod-
eled PM2.5. They were calculated using modeled 
and observed PM2.5 at 40 sites in the dust af-
fected areas. The average modeled PM2.5 con-
centrations at these sites are significantly (more 
than 3 times) higher than the measured average, 
possibly because DREAM outputs include dust at 
altitudes above the in-situ monitors. The mean 
bias and mean error are quite high. The agree-
ment index of 0.12 is low. These metrics suggest 
there is considerable room for improvement if 
NASA experimental data sets were assimilated 
into the model to replace baseline parameters. 

Table 5. Performance statistics of modeled sur-
face PM2.5 concentrations. 
Metrics PM2.5 

Mean observed 8.66 (µg/m3) 

Mean modeled 26.33 (µg/m3) 

Mean bias 17.67 (µg/m3) 

Mean error 26.51 (µg/m3) 

Agreement index 0.12 

 

2.3 Assimilated EO products 
The strategy of PHAiRS is to replace baseline 

DREAM parameters with satellite observations of 
the same, or closely allied, parameters that char-
acterize the land surface and drive the dust en-
trainment module. Table 6 lists the baseline pa-
rameters and those selected for assimilation. 
These are: (1) dust source regions; (2) digital ele-
vation; (3) aerodynamic surface roughness 
length; and (4), soil moisture. 

Uncertainties in satellite observations exist in 
sensor design, the algorithms defining sensor 
products, and assimilation requirements. These 
limitations are governed largely by the laws of 

physics and chemistry that can be more or less 
engineered and characterized. All NASA data 
sets used by PHAiRS have validation programs. 

Table 6. Baseline DREAM parameters and candi-
date assimilation parameters. 

Baseline 
Parameters 

Assimilated 
Parameters 

Land Cover: Olson World 
Ecosystem 10-min. 
(19km) Res 

MOD-12 1km reso-
lution 

Elevation: USGS 1km 
terrain data 

SRTM-3 arcsec 
(90m) terrain data* 
resampled to 30 
arcsec (1km) 

Aerodynamic roughness 
length: predicted using 
12 SSiB land cover types 

Look-up table linked 
to MOD-12 land 
cover  

Dust source areas FPAR “Fill” class 
254-255 

Soil Moisture: simulated 
using a land surface 
model 

AMSR-E  

 

Dust Sources 
Up-to-date patterns of land cover are important 

for DREAM to identify dust source areas and 
evolving dust storm episodes. PHAiRS assimi-
lated the Moderate Resolution Imaging Spectro-
radiometer (MODIS) Land Cover product 
(MOD12Q1). It is based on 17 classes of land 
cover defined by the International Geosphere-
Biosphere Programme (IGBP). The product sup-
plies an assessment of the quality or confidence 
placed in the classification. Five of the 17 catego-
ries are relevant to dust entrainment: open shrub-
lands; grasslands; croplands; urban and built-up; 
and, barren, or sparsely vegetated land. 

Land cover categories for MOD12Q1 were pro-
duced by the MODIS Science Team using a su-
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pervised approach. Training sites were developed 
by analyzing high resolution imagery in conjunc-
tion with ancillary data. The classification used a 
decision tree algorithm (C4.5) in conjunction with 
a technique for improving classification accura-
cies known as “boosting.” Boosting improves 
classification accuracies by estimating classifiers 
iteratively using a base learning algorithm (e.g., a 
decision tree) while systematically varying the 
training sample. The training sample is modified 
through iteration to focus the algorithm on exam-
ples that are difficult to classify correctly. This 
modification is performed by providing a weight 
for each training example. The importance of mis-
classified training samples is increased and the 
classification algorithm focuses on learning these 
samples. The boosted classifier's prediction is 
then based upon an accuracy-weighted vote 
across the estimated classifiers. The boosting 
algorithm used for creating MOD12Q1 is 
Adaboost-M1, which is the simplest multi-class 
boosting method. 

Recently, boosting has proven to be a form of 
additive logistic regression. As a result, probabili-
ties of class membership are obtained from boost-
ing. These probabilities are a means for assess-
ing the confidence of the classification results, as 
well as a means for incorporating ancillary infor-
mation in the form of prior probabilities to improve 
discrimination of cover types that are difficult to 
separate in the spectral domain. 

In addition to the classifications and assess-
ments, MOD12Q1 also provides mandatory qual-
ity information on whether each pixel has been 
newly classified or is dependant on a persistent 
value, and an embedded land/water mask as bit 
flags in the 8 bit Land_Cover_Type_QC parame-
ter3. Overall, the product assimilated easily into 
DREAM. Its major drawback is that it is not being 
updated on an annual or seasonal basis for ro-
bust health applications. 

To help identify dust source areas, the team 
examined Leaf Area Index (LAI), Enhanced Vege-
tation Index (EVI), and Fraction of Photosyntheti-
cally Active Radiation (FPAR). The MOD15 FPAR 
product holds the greatest promise for DREAM 
assimilation since it has a class (value 253) la-
beled "barren, desert, or very sparsely vege-
tated." In the FPAR algorithm, this value, among 
others for water, urban, and permanent snow and 
ice, is known as a "fill" class. Since the FPAR al-
gorithm requires MOD12 as an input, it was 
thought to use class 253 to seasonally update 
MOD12 for DREAM model runs. The idea was 

tested over the White Sands National Monument 
in New Mexico by substituting MOD12 pixel val-
ues with FPAR class 253 values. Results were 
modest, indicating that the relationship is com-
plex. It is questionable also whether FPAR fill val-
ues are updated seasonally along with non-fill 
classes. 

Topography 
Another data set for assimilation into DREAM is 

digital elevation. This parameter gives the model 
a realistic representation of the air/land interface. 
Terrain induced systems include land/sea 
breezes, mountain/valley winds, and forced air-
flow over and around rough terrain. Data from the 
Shuttle Radar Topography Mission (SRTM) were 
assimilated. The most recent version of this data 
set (released in May 2006) is called SRTM30, the 
global 30 arcsec [1km] product. 

The SRTM Mission obtained elevation data on 
a near-global scale to generate a nearly complete 
high-resolution digital topographic database of 
Earth4. SRTM consisted of a specially modified 
radar system that flew onboard the Space Shuttle 
Endeavour during an 11-day mission in February 
2000. To acquire digital elevation data, the SRTM 
payload was outfitted with two radar antennas. 
One was located in the shuttle's payload bay, the 
other on the end of a 60-meter mast that ex-
tended from the payload bay once the Shuttle 
was in space. 

Before SRTM level-1 data could be assimilated, 
they had to be contiguous with no spikes, wells, 
or large voids. Voids are caused by geometric 
artifacts, specular reflection off water, phase un-
wrapping artifacts, and, complex dielectric con-
stant (Dowding et al., 2004). SRTM data for the 
PHAiRS domain showed that the primary concern 
focused on two types of voids: small “salt and 
pepper” voids consisting of pixels having no 
SRTM response; and larger voids representing 
areas of contiguous pixels. The “salt and pepper” 
voids were replaced by interpolated values using 
a neighborhood filter. The larger voids were filled 
using ancillary data (Sanchez, 2007). Figure 9 
illustrates the raw and filtered SRTM data for a 
small part of the DREAM domain. 
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Figure 9. (Top) “salt and pepper” voids in SRTM 
data; (bottom) appearance after voids were re-
moved using a neighborhood filter. 

Aerodynamic Surface Roughness Length 
SRTM data were used along with MOD12 to 

create a surface roughness layer for the DREAM 
model. Aerodynamic surface roughness length 
(z0) is defined as the height above the ground at 
which wind speed is zero under neutral atmos-
pheric stability (that is, where air temperature is 
isothermal and equal to that of the surface)5. 

For z0, the less water held in a soil, the more 
prone it is to wind erosion and dust entrainment. 
Retention of soil water consists of two factors: (a) 
molecular adsorption on the surface of the soil 
grain; and (b), inter-particle capillary forces. The 
latter of these determines whether dust will be 
lifted from a surface at a given wind speed. As 
soil moisture is increased, the threshold wind ve-
locity is also increased, thus reducing the amount 
of dust injected into the atmosphere (van Deursen 
et al., 1993; Nickovic et al., 2001). 

To estimate z0, one must measure surface 
momentum, soil temperature, and water vapor, 
among other surface properties. Conceptually, it 
is possible to measure these properties using 
sensors from different satellites, but the technol-
ogy for creating a z0 data set from different sen-
sors into a form that can be assimilated into 
DREAM does not exist. To overcome this hurdle, 
the PHAiRS team transformed the MOD12 land 
cover data into a simulated z0 product for assimi-
lation. Table 7 is considered a “best practice” z0 
defined by standard physiognomic cover types 

extractable from MOD12 satellite observations by 
Stennis Space Center. It did not replace any Pre-
PHAiRS DREAM parameter and therefore repre-
sents a novel derivation of data in the model. 
Model outputs showed modest improvement. 

Table 7. Look-up values for surface roughness 
length (z0). Source: Stennis Space Center. 

DN Land Cover Category Z0 Range 
(m) 

Default 
z0 

8 Woody Savanna 0.10-0.20 0.15 

9 Savanna 0.03-0.10 0.06 

10 Grassland 0.03-0.07 0.05 

12 Cropland 0.04-0.18 0.11 

14 Crops/Natural Mosaic 0.10-0.30 0.20 

16 Barren/Sparse  0.00-0.01 0.01 

253 Fill 0.00 0.00 

Soil Moisture 
The Advanced Microwave Scanning Radiome-

ter (AMSR-E) is a multi-frequency, dual-polarized 
sensor that detects emissions from the Earth's 
surface and atmosphere6. Passive microwave 
emissions can be used to estimate soil moisture 
in the surface centimeters (NSIDC, 2000). How-
ever, there are several challenges to assimilating 
data into DREAM: (a) the effective data footprint 
is almost 70km, while the model outputs are aim-
ing toward 1km resolution; (b) the data are for-
matted to an Equal-Area Scalable Earth Grid or 
EASE-Grid, which is not readily compatible with 
PHAiRS remote sensing software; (c) there are 
serious data voids in areas of dense vegetation 
(high Leaf Area Index) and under snow cover; 
and (e), there are measurement errors associated 
with sampling depth and vegetation density 

Despite formatting and resolution issues, soil 
moisture data from AMSR-E were assimilated into 
PHAiRS DREAM. Outputs showed little improve-
ment in the model’s performance. 

Aerosol Optical Depth 
From its inception, PHAiRS expected that aero-

sol patterns would help define areas of elevated 
dust concentrations near reported dust events. 
The MODIS Aerosol Product (MOD04) monitors 
ambient AOT globally over the oceans, and over 
a portion of the continents. Aerosol size distribu-
tion is derived over the oceans, and aerosol type 
is derived over the continents. Level-2 data are 
produced daily at a horizontal resolution (at nadir) 
of 10×10km. Aerosols are one of the greatest 
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sources of uncertainty in climate modeling. Con-
centrations and distributions vary in time and 
space and can lead to variations in cloud micro-
physics that in turn impact cloud radiative proper-
ties and climate. The PHAiRS team tested 
whether MOD04 AOT patterns would reveal dust 
events (Mahler, 2006) and discovered that they 
are not. While there are some cases where AOT 
data are reported for dust events, in most cases 
the data seem to be incoherent for the desert 
southwest, perhaps because they are inter-
spersed with many pixels of no data. 

2.4 Post assimilation model outputs 
Data sets described in Section 2.3 were used 

to replace parameters in the model domain after 
the baseline model runs. MOD12Q1 replaced the 
out-dated OWE data set based on 1970s/80s 
data sources. The MOD12Q1 has a higher spatial 
resolution than OWE, 30-second versus 10-
minute and it represents land cover conditions in 
2001. 

Following the land cover data, SRTM terrain 
data, z0, FPAR data, and AMSR-E soil moisture 
data were assimilated into the DREAM system. 
FPAR data were used to locate areas covered 
with vegetation and, therefore to locate barren 
surfaces indirectly that are susceptible to generat-
ing airborne dust. Because of temporal resolution 
and incomplete coverage of the AMSR-E data, a 
composite of AMSR-E soil moisture data was as-
sembled for initial assimilation into DREAM. 

Table 7 lists key model runs and the NASA 
data sets that were assimilated (marked with Y). 
Run1a is the baseline (pre-assimilation) run. 
Mod12 (barren class) was a standard replace-
ment set in all the model runs and was the only 
parameter replacement in run 2a. Run 4 assimi-
lated the barren class and digital elevation from 
SRTM; runs 5a and 5b added z0; run 6 was a test 
of Mod12 with Mod15 FPAR substituted for part of 
the domain; run 15 assimilated barren ground 
with soil moisture without digital elevation; and 
run 10a assimilated barren ground, SRTM and 
soil moisture. 

Table 7. Model runs using Earth observation data. 

Run # MOD12 SRTM  
Surface 
roughness 
length 

FPAR  AMSR-
E  

Run 1a      

Run 2c Y     

Run 4a Y Y    

Run 5a Y Y Y   

Run 5b Y Y Y   

Run 6a Y   Y  

Run 
15a Y    Y 

Run 
10a 

Y Y Y  Y 

 
Figures 10a-e show the agreement indices of 

modeled surface wind, temperature, PM2.5 and 
PM10 concentrations compared to observations. 
Although impacts vary with different model runs, 
in general, the assimilation of NASA Earth obser-
vations data improved DREAM’s performance 
measurably. 
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Figure 10. Agreement indices of modeled surface 
wind, temperature, PM2.5 and PM10 concentrations 
compared to observations. 

Figure 11 illustrates the pattern of modeled sur-
face dust concentrations when MOD12Q1 re-
placed OWE land cover data. This pattern shows 
a much closer agreement with observed patterns 
than those patterns shown in Figure 8. 

 
Figure 10. Modeled DREAM output using MOD12 
data. Compare patterns shown in Figure 8 (p.8). 

2.5 The V&V system 
Verification and validation of DREAM outputs 

has been done by making qualitative and quanti-
tative (statistical) comparisons of model outputs 
with in-situ dust concentrations reported by EPA's 
AIRNow network. To this end, development ef-
forts at EDAC focused on three tasks. 

Model Output Archive 
The first task was to generate an archive of 

DREAM dust concentration data. This includes a 
daily DREAM model run for the 48-hour forecast 
beginning at 00:00:00 hours of the previous day. 
It also includes a twice-a-day DREAM model run 
for all days for 2006. The archiving system is de-
signed to execute three model runs per day (two 
historical model runs for 2006, and one ongoing 
72-hour forecast for the current day). The configu-
ration of the model prevents concurrent execution 
of runs, so they are scheduled to minimize the 
potential for conflict. A single model run executes 
in approximately 5 hours, so a two hour buffer has 
been built into the execution schedule. 

As of September 13, 2007, there were 335 
separate 48-hour forecast datasets in the archive 
for the period January 1, 2006 to September 11, 
2007. These are stored on the PHAiRS data 
server. Most model runs reach completion, but 
there are days when they do not. On 32 occa-
sions (ca. 10%) the runs did not complete and 
had missing data. The team is exploring this 
situation and will report its findings in its final 
benchmark report. 

Data Management and Web Services 
The second task was to develop web services 

that permit system developers and health-care 
users to search for, access, and download dust 
concentration data generated by the DREAM 
model, as well as data collected in-situ by EPA's 
AIRNow network. Both the historical and daily 
forecasts are integrated into the PHAiRS data 
management system for delivery to public health 
decision support systems through simple object 
access protocols (SOAP) and web mapping ser-
vice (WMS) interfaces published by the project. 

The PHAiRS web service architecture allows 
users to search for and download both EPA AIR-
Now PM2.5 and PM10 particulate data, as well as 
DREAM model output values for specific loca-
tions. Users can download PM2.5 or PM10 AIRNow 
data for a defined date range, or for a single day. 
Similarly, SOAP service functions allow one to 
download both EPA and DREAM dust concentra-
tion values for a single station, or for all stations 
within the modeling domain, or to download data 
for a specific day, a 48-hour period corresponding 
to a DREAM model run, or a date range specified 
by the user. Note that, at present, the EPA AIR-
Now data values are not segregated into species. 
The downloadable in-situ values thus represent a 
composite measure of both geologically-derived 
and anthropogenically-produced particles. 

10d 

10e 
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Statistical Measures 
The third task was to create web services that 

allow developers to generate statistical measures 
and indices. One of these, the DREAM Data Ac-
cess and Statistical Wizard, allows one to extract 
modeled dust values for specified X-Y coordi-
nates at specified times, and combine them with 
AIRNow values to generate statistics. In order to 
verify and validate the performance of consecu-
tive versions of the model, web services have 
been designed to calculate measures of central 
tendency and measures of variability for both ob-
served and modeled dust concentration values. 
These measures include the mean and standard 
deviation. Another set of statistics provides meas-
ures of association between these two variables. 
These include: mean observed value at each site; 
mean bias (0 if perfect); mean error (0 if perfect); 
normalized mean bias (0% if perfect); normalized 
mean error (0% if perfect); fractional bias (0% if 
perfect); fractional error (0% if perfect); and index 
of agreement (1 if perfect); the correlation coeffi-
cient (R); and the centered root mean square 
(RMS). These statistics can be obtained for a sin-
gle station for a 48-hour DREAM run, or for a date 
range specified by the user. 

2.6 In situ V&V data streams 
AIRNow Reporting Stations 
Historical AIRNow data (hourly PM2.5 and PM10) 

for the entire model execution period (2006-
Present) are available through the DataFed’s 
AIRNow Web Coverage Service (WCS)7. These 
data are acquired daily as a CSV file for all EPA 
stations within the DREAM domain for the previ-
ous 60 days. The daily reacquisition for the previ-
ous 60 days corrects data for stations that experi-
enced delays in submitting values either to EPA's 
network or to DataFed's data ingest system. 

During the development phase of the PHAiRS 
V&V system, questions arose regarding the time-
stamps encoded into the CSV files. Initially it was 
thought there was an undocumented offset to 
UTC, but subsequent discussions with DataFed 
revealed that timestamps encoded in the AIRNow 
data files vary by day and station, and that these 
timestamps are not consistently converted to 
UTC. This led DataFed to reconfigure its services 
to provide AIRNow data in UTC, regardless of the 
offset in the original data. This standard UTC for-
mat now provides unambiguous alignment of 
DREAM model outputs with well-defined ground 
observation times. 

The Data Access and Statistical Wizard pro-
vides hourly DREAM output from 2006 to present 
and in-situ PM10 and PM2.5 data from DataFed. 
The current web interface has 94 PM2.5 and 41 
PM10 sites for which modeled and observed data 
are collocated for side-by-side comparisons (Fig-
ures 12 and 13). Many sites have missing data for 
lengthy periods, especially for days of known dust 
events. It is suspected that in-situ sensors fail un-
der extreme conditions and/or reporting of these 
events is delayed. It is unclear how many sites 
within the in-situ network have this problem, but 
often it happens that dust events of interest have 
missing data at many sites. It is sometimes possi-
ble to obtain data from the AIRNow website itself 
rather than through the DREAM web interface. 
Also, there is an obvious gap in station coverage 
for PM10 in central Texas, a region known to ex-
perience widespread dust events. Most AIRNow 
sites are located in cities, making validation over 
rural areas difficult. It has been shown also that 
the MOD12Q1 data for Mexico in the modeling 
domain improve validation statistics at US sta-
tions (Yin et al., 2007), yet to date there are no in-
situ measurements from Mexico. 

PM2.5 monitoring sites in DREAM domain available on web interface
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Figure 12. PM2.5 monitoring sites in the DREAM 

PM10 monitoring sites in DREAM domain available on web interface
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Figure 13. PM10 monitoring sites in the DREAM 
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Speciation in PM10 and PM2.5 Dust 
There are drawbacks to comparing model out-

puts with AIRNow data for PM10 and PM2.5 be-
cause each fraction contains materials that are 
not generated by natural atmospheric processes. 
A more robust approach for health applications is 
to verify and validate these fractions continuously 
on the basis of individual species’ concentrations. 

PM10, being larger in diameter and mass than 
PM2.5, requires more momentum and higher wind 
speeds to be entrained. After lifting, this fraction 
also settles out of the atmosphere quicker. Be-
cause DREAM is strictly wind driven, and PM10 is 
almost always mechanically entrained, the coarse 
fraction is a better indicator of atmospheric dust 
events than PM2.5. However, in-situ PM10 may be 
present in arid environments even in the absence 
of wind, and in such cases would not be predicted 
by DREAM. Anthropogenic concentrations often 
are present when DREAM predicts none. Fugitive 
dust from off-road vehicles, agricultural and con-
struction dust clouds and emissions of larger pol-
lutants from automobiles and factories add biases 
to PM10. During non-windy conditions, it is still 
possible to observe other sources of PM10 that 
DREAM has no way of simulating. Due to its rela-
tively large size, PM10 deposits in the upper tho-
racic region of the human respiratory system, and 
is often a concern for silicosis (Policard et al., 
1952; Bar-Ziv and Goldberg, 1974; Norboo et al., 
1991). 

PM2.5, on the other hand, may be present be-
fore and linger after weather-driven events. It 
penetrates deeper into the lungs and is a serious 
concern for chronic asthma, MI, and other respira-
tory conditions. Furthermore, its smaller size, 
makes validation more difficult. There are many 
more types of particles in the fine fraction. These 
finer particles include organic carbon as smoke 
from fires, soot from automobile emissions, and 
photochemical products. Other gases react 
photochemically forming ammonium sulfates and 
ammonium nitrates in this size range. Trace met-
als are produced via industrial emissions. Finally, 
natural aerosols are created mechanically as sea 
salt or windblown mineral dust. PHAiRS modelers 
have been concerned primarily with the mineral 
dust component, but these other components of 
PM2.5 material complicate measurement of par-
ticulate concentrations, and therefore model per-
formance. Total PM2.5, as referred to here is the 
net concentration of all species in the air for that 
size range. DREAM has no anthropogenic emis-
sion module, so the other species and the anthro-
pogenic signal in total PM2.5 have been ignored. 

The importance of speciation is evident in ana-
lyses of urban areas. El Paso, TX for example, 
experiences both desert dust storms and anthro-
pogenic pollution episodes. DREAM can only 
model the former, so distinguishing the two using 
speciation is extremely beneficial for V&V. It is 
evident that during days of dust storms, the soil 
component comprises a much larger fraction of 
the total PM2.5, while on non-windy days the other 
species dominate. While this is promising for V&V 
purposes, more frequent in-situ data are needed. 
Presently, only daily averages taken every 3rd 
day are used for speciation, so DREAM can be 
validated discretely only at this frequency. Con-
tinuous hourly data are ideal, but are probably not 
feasible due to cost and time restraints. The rep-
resentation of cities in EPA’s Speciation Trends 
Network (STN)8 data is limited mainly to large 
metropolitan areas that monitor anthropogenic 
species. The soil component will usually be small 
in proportion to other species at these sites (Fig-
ure 14), but it is assumed to be larger in rural ar-
eas that are routinely exposed to desert dust and 
relative absence of a large human influence. 
Speciation at these sites may support the claim 
that a soil component is needed to validate the 
windblown dust model, and attempts to find such 
data are underway. One likely source is the Inter-
agency Monitoring of Protected Visual Environ-
ments (IMPROVE)9, a program designed to 
measure air quality in rural National Parks. Speci-
ation and/or visual range data from this program 
could be used in future PHAiRS V&V efforts. 

19%

5%

 
Figure 14. Mean dust conditions for El Paso, 
2006: deep red= sulfate (10%), red = nitrate (5%), 
yellow = metals (5%), green = ions (4%), lt. blue = 
soil (19%), med. Blue = carbon emissions (10%), 
and deep blue = organic carbon (47%). 

2.7 Model runs and statistics 
For statistical V&V purposes, we regularly com-

pare DREAM model runs to observational PM10 
data during dust events that occur in the model 
domain, particularly in Texas and southern Cali-
fornia.  An example of these occurred on January 
5th, 2007. A severe wind and dust storm near 
Barstow caused a crash in which a minivan hit a 
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tour bus, killing two and leaving others with se-
vere injuries. Across the Southland, residents 
woke up to stacks of palm fronds on the ground, 
downed trees and other debris. The wind hobbled 
the morning commute, as freeways were jammed 
because of wind and several big-rigs toppled or 
jackknifed on freeways across the region (High 
Winds Aren’t Over Yet, L.A. Times, January 6, 
2007, p. A1). High winds occurred across the de-
sert southwest, including parts of Texas. Using 
DREAM model  hind-casting, the team investi-
gated this dust event using seven PM10 AIRNow 
monitoring stations, four located in Southern Cali-
fornia (Burbank, Riverside, Palm Springs, Indio) 
and three others in Texas (El Paso, Mission, 
Selma). 

Figure 15 shows a 72-hour plot for each station 
(January 4-6, 2007) and illustrates the dust event 
that occurred around 23:00 UTC on January 5th at 
most stations. The stations are plotted geographi-
cally west (l) to east (r). Southern California was 
affected most by this event. Both the observed 
and modeled data show a strong dust gradient 
from east to west, with the exception of Riverside, 
where no significant dust event was recorded in 
the observed data. Model improvements between 
an earlier version (15a) and the most recent ver-
sion (20a) are evident in the decrease in magni-
tude of the latest model outputs. This improve-
ment was accomplished in May 2007 with a cor-
rection to the bin size algorithm. Previous ver-
sions were ‘grabbing’ too much of the bin to rep-
resent PM10 values. 
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Figure 15. PM10 concentrations, modeled and ob-
served, at seven AIRNow stations across the 
southwest for January 4-6, 2007. 

Figure 16 represents the correlation between 
modeled and observed data for the January 4–6, 
2007 test case. Derivation of the performance 

statistics is described in Yin et al. (2005). A total 
of 443 hourly values were used to compare mod-
eled forecasts to the observed AIRNow data. Cor-
relation lines are skewed toward the modeled 
data axis, illustrating the models tendency to 
over-predict dust events. Model improvements 
are indicated in the improved correlation from 
version 15a to 20a. 

A statistical analyses that included the seven 
sites using the latest version of the model (20A) is 
shown in Table 8. These statistical parameters 
will be used to validate future versions of the 
DREAM model and to demonstrate improvements 
over previous versions. 
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Figure 16. Magnitude correlation (seven sites, N = 
443) during the Jan 4-6, 2007 dust episode. 

Table 8. Statistical analysis of seven test sites. 
N (seven sites) 443 obs / 443 mod 

Mean 29.2 obs / 26.3 mod 

Mean bias 2.8 

Meas error 26.0 

Normalized mean bias 10.8 

Normalized mean er-
ror 76.2 

Fractional bias 12.1 

Fractional error 88.1 

Index of agreement 0.63 

 

The timing correlations for two test cases are 
shown in Figure 17. A 72-hour event clock is rep-
resented on the axes, and the modeled vs. ob-
served peak hour is plotted. Several sites had 
more than one peak hour during the three-day 
event. A plot of daily peak hour for each site, 
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would yield 21 data points. Occasionally, how-
ever, no peak hour was evident particularly on 
January 4th. These results (R2 = 0.95) for model 
version 20A show an improvement over previous 
versions of the model published in earlier work 
(R2 = 0.76, Yin et al, 2005). 
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Figure 17. Timing Correlation (N=18 peak hours, 
seven sites) for the Jan 4-6, 2007 dust event. 

Another test case was run for a high wind event 
during the last week of February 2007. Very 
strong and gusty westerly winds caused blowing 
dust over a large area of eastern New Mexico and 
northwest Texas on the afternoon and early eve-
ning of February 24th (Figure 18). A huge dust 
cloud was blown eastward across much of the 
eastern half of the state on the 25th and then 
stagnated over parts of Central, Southeast, and 
South Texas on the 26th and 27th. PM10 levels in 
parts of the southern Panhandle were hazardous 
on EPA’s Air Quality Index (AQI) scale. 

 

Figure 18. Dust storm in Texas on February 24, 
2007 . Image is a cropped 500m resolution 
MODIS Terra image from Rapidfire. 

Figure 19 shows the 72-hour plot for each sta-
tion (February 23-25, 2007) and illustrates the 

dust event that occurred around 00:00 UTC on 
February 24th at most stations. The stations are 
plotted geographically west (l) to east (r). Two 
versions of DREAM are plotted (15a and 20a). 
The DREAM model under-predicted the event at 
Palm Springs, over-predicted the event at Indio, 
but performed well at the Texas sites, particularly 
at El Paso. Observed data from Selma and Mis-
sion, TX indicated a minor event and the DREAM 
model outputs were in fairly good agreement for 
these sites. 
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Figure 19. The February 23-25, 2007 dust epi-
sode, seven sites located in the model domain. 

Figure 20 illustrates the magnitude correlation 
between modeled and observed data for the Feb-
ruary 23-25, 2007 test case. Correlations for both 
model versions were poor for this test case (R2 ~ 
0.1), due primarily to the Palm Springs and Indio 
data discrepancy. In spite of this, the timing corre-
lations (Figure 21) again show excellent agree-
ment between observed and modeled peak hour. 
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Figure 20. Magnitude correlation between ob-
served and modeled data, February 23-25, 2007 
test case. 
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Figure 21. Timing correlation, February 23-25, 
2007 test case (N=16 peak hours). 

The same statistical analyses that included 
seven sites using the latest version of the model 
(20a) is shown in Table 9 for the February test 
case. The statistics indicate that the model had a 
negative bias, or under-predicted the February 
event. The January test case had a positive bias 
and a much better index of agreement (0.63 vs. 
0.42). 

Table 9. Statistical analysis of seven test sites, 
Feb 23-25, 2007. 
N (seven sites) 346 obs/346 mod 
Mean 34.1 obs/59.3 mod 
Mean bias -25.0 
Mean error 56.0 
Norm. mean bias -42.4 
Norm. mean error 67.7 
Fractional bias 9.7 
Fractional error 122 
Index of agreement 0.42 
 

In summary, these results will be used to as-
sess the improvements made in future model ver-
sions. The two test cases illustrated here indicate 
that the model can accurately predict the timing of 
the dust events, but the prediction of the magni-
tude of events are a mixed result. 

3.0 Health Data 
The integrated system solution executed in 

PHAiRS has focused on inputs and outputs (i.e., 
Missions and Models) that might be used by the 
health community to formulate decision support 
systems. A NASA directive from the Earth Sci-
ence Applications Division strongly discouraged 
use of funds to “develop a DSS“. Nevertheless, a 

requirement of the project was to identify a candi-
date DSS into which project outputs could be in-
serted and tested. The Rapid Syndrome Valida-
tion Program (RSVP) was PHAiRS’ proposed de-
cision support system. However, between 2003 
and 2005, RSVP morphed into a commercial sys-
tem called the Syndromic Reporting Information 
System (SYRIS). This system represents a so-
phisticated convergence of modeled geostatistical 
and biostatistical processes. RSVP was beta-
tested over a 25,000 square mile area surround-
ing Lubbock, TX (Morain and Sprigg, 2005) and 
was subsequently deployed as SYRIS over the 
Texas Department of State Health Service, Public 
Health Region 1, covering 41 counties surround-
ing Lubbock (Lindley, 2006). 

Efforts to relate PHAiRS modeled results with 
hospitalizations, school nurse records, and emer-
gency room admissions have been made, but 
initial results are too few for verification and vali-
dations purposes. We expect baseline biostatis-
tics will include Poisson regression, zero-inflated 
Poisson regression (ZIP), generalized additive 
models of daily visit counts, and logistic regres-
sion of daily proportion of respiratory visits diag-
nosed as asthma, MI, or other respiratory condi-
tions. In the meantime, the PHAiRS system has 
been designed to facilitate these statistical analy-
ses, and to make dust forecasts and compliant 
aggregated health data available through web-
based services to qualified health authorities for 
statistical analyses. 

The following Sections are intended to provide 
the reader with information about the data and 
analytical processes. 

3.1 Types of data and uncertainties 
Typically primary sources of health outcome 

data are derived from statewide hospital data 
queries of emergency department and hospital 
inpatient discharge records for asthma and MI. 
Other common health records are kept by Vital 
Records and Health Statistics, Indian Health Ser-
vice, Medicaid, and a variety of surveys such as 
behavioral and risk factors surveys. 

Uncertainties in public health data far surpass 
those for environmental measurements and mod-
eling. Uncertainties in health data begin with indi-
vidual genetics, and magnify at each step in the 
reporting chain from the onset of symptoms or 
syndrome (e.g., knowing the exact location of the 
individual at the time of exposure, what that indi-
vidual was doing at the time of exposure, the du-
ration of the exposure, and post-exposure activi-
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ties). More than likely the patient can only de-
scribe the answers to these questions in general 
terms, which leads first responders like school 
nurses, ER personnel, physicians, and others to 
treat the case along prescribed best practices 
aided by patient history. 

Longitudinal studies of chronic respiratory dis-
eases like asthma are in their infancy (Gauder-
man, et al. 2004). In the absence of mandatory 
autopsies, very few MI cases are reported as 
“caused by dust.” 

Exacerbating uncertainties inherent in health 
records is the health care system itself. This sys-
tem is balanced between being a commercial en-
terprise and a social/humanitarian requirement. 
Hospitals earn revenue from inpatient care (i.e. 
number of beds occupied). Comparatively little 
revenue is realized from emergency room (outpa-
tient) care. Increasingly, ER patients are diag-
nosed and released rather than admitted as inpa-
tients. Because ER operations are financial “loss 
leaders,” episodic increases in outpatient arrivals 
are diagnosed quickly and reported through a 
coding system that validates reimbursements to 
hospitals, but because of time constraints, fre-
quently results in partial or misdiagnosis. Respira-
tory diseases are often assumed to be infectious, 
resulting in patients being given antibiotics for an 
asthma condition that is chronic but exacerbated 
by atmospheric contaminants. The loss of inpa-
tient admissions has led many hospitals to reduce 
the number of beds and the accompanying re-
quirement to have permanent, full-time personnel 
to service those beds. 

3.2 Geo- and Biostatistical Processes 
Data mining and clinician-based syndromic 

surveillance strategies are both being explored by 
CDC. Situational awareness is essential for early 
detection of infectious diseases and bioterrorism 
threats, but most public health compliance report-
ing focuses on notifiable diseases. There is a 
critical time lag of several weeks between situ-
ational awareness and notifiable reporting, when 
what is needed is rapid syndromic surveillance 
that provides actionable information within hours. 

Initial work integrating the geostatistical capa-
bilities of the PHAiRS system with biostatistical 
analyses has resulted in statistical routines that 
summarize the hourly DREAM model outputs and 
AIRNow measurements for Lubbock and the Mid-
land/Odessa Texas areas for the first two months 
of 2006. These summary data were generated 
using the R statistical programming language, 

and are based upon data retrieved from the 
PHAiRS HTTP interface to the data extraction 
SOAP services. Requests for comma-separated-
value (CSV) data may be submitted to the 
PHAiRS web server. These requests are con-
verted by the web server interface into SOAP ser-
vice calls to the PHAiRS analytical services that 
extract pixel values from a series of DREAM 
model outputs and query the database for corre-
sponding AIRNow measurements for the same 
location. The resulting data are formatted as CSV 
files and delivered to the requesting system in a 
format suitable for data ingest and processing. 
Since R can use a network-accessible resource 
(such as the above described HTTP-based sys-
tem) as a data source in an analysis, the product 
generated by R consists of a new CSV file con-
taining the daily summary data for both the 
DREAM model and AIRNow, and a set of URL 
web addresses where the hourly data from which 
the daily summaries are derived may be obtained. 
Such a CSV file has been used to integrate bio-
statistical analysis for correlation between PM2.5 
concentration and emergency room admissions 
for respiratory problems in the Lubbock area. 

The issue of catchment modeling in the biosta-
tistical analyses has also been considered. Spe-
cifically, in order to better represent the particulate 
concentrations to which a population has been 
exposed, the geographic area of that population 
must be defined. That geographic area then is 
used to extract and process air quality data. While 
not yet implemented, it appears that this will be a 
necessary next step in developing a reasonable 
model for the capture and presentation of air qual-
ity and health data in a consistent and statistically 
valid manner. An initial capability for the summa-
rization of DREAM model outputs for irregular 
polygons (counties thus far) has already been 
developed as part of the PHAiRS SOA, so a ca-
pability for providing daily summaries for regional 
model outputs (as opposed to single model 
cell/pixel) has already been developed. Further 
development of this capability will contribute di-
rectly to this catchment-based analytical ap-
proach. 

4.0 Summary and Conclusions 
Remote sensing of the environment is critical in 

advanced systems to warn of imminent, life-
threatening sand and dust storms and to reduce 
risk of exposure to mineral dust concentrations 
that contribute to cardiovascular and respiratory 
disease. MODIS data improve identification of 
active mineral dust sources, and thus, numerical 
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model simulations and forecasts of dust genera-
tion, entrainment, and downwind dispersal and 
deposition. 

An advanced numerical dynamical model of 
dust generation and entrainment (DREAM), 
driven by operational, validated, weather forecast 
models of the U.S. National Weather Service 
(eta), initialized with MODIS landscape informa-
tion, can forecast the timing of an advancing dust 
storm verifiably to meet the needs of many users. 
While the dust forecast system developed under 
PHAiRS simulates and predicts the three-
dimensional size-concentration characteristics of 
the dust cloud, verification of model output is 
problematic. 

For V&V of airborne particulate concentration, 
PHAiRS relies mainly on a regionally sparse net-
work of in-situ particulate sampling stations for 
statistical comparison DREAM-generated PM10 
and PM2.5 concentrations. Furthermore, the sam-
pling networks are concentrated in densely-
populated, large urban areas, subject to PM10 and 
PM2.5 sources generated by human activity, as in 
construction and combustion. And, too few speci-
ated particle sampling sites are available to iden-
tify natural vs. man-made sources. The PHAiRS 
comparisons of optical depth in the NASA/ 
AERONET network of photometers, and airport 
networks measuring visibility, have provided other 
quantitative measures against which to compare 
model output. A-Train’s CALIPSO and GLORY 
offer near-term opportunities to test satellite-
based measurements of aerosol profiles for future 
V&V, as would greater access to ground-based 
LIDAR sensors, which have been used to validate 
dust model performance in the Mediterranean 
region. 

Specific uncertainties exist in each data-
set/product. For example, the MOD12Q1 product 
offers only the one class for “barren.” This class 
includes not only barren ground, but rock surfaces 
and un-vegetated urban pixels. Typically, sea-
sonally active agricultural dust sources are not 
distinguished. Even though use of the MOD12Q1 
product improved the DREAM output, it is not cer-
tain why this product made a difference. Was it 
only the spatial resolution of the assimilated data 
vis a vis the surface data used in baseline 
DREAM? We intuit that soil moisture is important; 
but when AMSR-E soil moisture data were as-
similated in the model runs, no significant im-
provement in model performance occurred. 

Products specifically designed with the end 
user in mind are being evaluated in key state of-

fices with operational health and air quality re-
sponsibilities. These products will be modified as 
needed, and further V&V will play a large role in 
adapting/adopting the new technology developed 
under PHAiRS for public health services. 
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AE – Angström Exponent 

AMSR-E – Advanced Microwave Scanning Radi-
ometer for EOS 

AOD – Aerosol Optical Depth 

AOT – Aerosol Optical Thickness 

AQI – Air Quality Index 

AQS – Air Quality System 

BGC – BioGeochemical Cycles 

BLM – Bureau of Land Management 

CDC – Centers for Disease Control and Preven-
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CGI – Common Gateway Interface 

CSV – Comma-separated-value 

DAAC – Distributed Active Archive Center 

DREAM – Dust Regional Atmospheric Model 

DSS – Decision Support System 

EASE-Grid – Equal-Area Scalable Earth Grid 

ECMWF – European Center for Medium-Range 
Weather Forecast 

EO – Earth Observation 

EOS – Earth Observation System 

EPA – Environmental Protection Agency 

ER – Emergency Room 

ESMF – Earth System Modeling Framework 

ESR – Earth Science Results 

FAO – Food and Agriculture Organization 
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ISDS – International Society for Disease Surveil-
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ISS – Integrated System Solution 

LAI – Leaf Area Index 

LiDAR – Light Detection and Ranging 

METAR – Meteorological Aerodrome Report 

MI – Myocardial Infarction 

MODIS – Moderate Resolution Imaging Spectro-
radiometer 

MRLC – Multi-Resolution Land Characteristics 
Consortium 

NASA – National Aeronautics and Space Admini-
stration 

NCAR – National Center for Atmospheric Re-
search 

NCEP – National Centers for Environmental Pre-
diction 

NGA – National Geospatial Intelligence Agency 

NLCD – National Land-Cover Database 
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NMB – Normalized Mean Bias 

NME – Normalized Mean Error 

NOAA – National Oceanic and Atmospheric Ad-
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NOMADS – National Operational Model Archive 
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Satellite System 

NPS – National Park System 

NRCS – Natural Resources Conservation Service 

NSIDC – National Snow and Ice Data Center 
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PHAiRS – Public Health Applications in Remote 
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REGAP – Regional Gap Analysis Project 

RMSE – Root Mean Square Error 
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SeaWiFS – Sea-viewing Wide Field-of-view Sen-
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SOA – Service Oriented Architecture 

SOAP – Simple Object Access Protocol 

SRTM – Shuttle Radar Topography Mission 

SST – Sea Surface Temperature 

STN – Speciation Trends Network 

SYRIS – Syndrome Reporting Information System 

TCEQ – Texas Commission on Environmental 
Quality 

TM – Thematic Mapper 

UMD – University of Maryland 

UN – United Nations 

UNESCO – United Nations Education, Scientific 
and Cultural Organization 

URL – Uniform Resource Locator 

USFS – United States Forest Service 

USFWS – United States Fish and Wildlife Service 

USGS – United States Geological Survey 

UTC – Coordinated Universal Time 

V&V – Verification and Validation 

WCS – Web Coverage Services 

WHO – World Health Organization 

WMS – Web Mapping Services 

WSSD – World Summit on Sustainable Develop-
ment 
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