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ABSTRACT: 
 
A challenge for assimilating Earth observation data in public health applications is to demonstrate that such data actually improve 
model predictions of environmental conditions known to trigger health responses. The body of medical and epidemiological 
knowledge linking environmental health to human health responses is growing rapidly. Through these known linkages, it has 
become increasingly clear to science and government that satellite observations will play a significant role in forecasting short term 
weather episodes, as well as mid- to long-term environmental changes that cycle over human generations. Among the approaches to 
demonstrating the value of Earth observations in environmental modelling is data assimilation. This approach is fundamentally 
different from other approaches in that it seeks to replace parameters in Earth science models with comparable parameters measured 
by experimental and operational satellite sensors. Thus, assimilation is a process that incorporates satellite data as part of the model; 
not as an adjunct to the model. Assimilation is often perceived to be straight forward, but in fact is an exacting process demanding 
several stages of verification and validation to benchmark model improvements. These stages include: (a) Validating the 
performance of the model using its baseline design parameters; (b) Assessing sensor products to find candidate satellite 
measurements to replace baseline parameters; (c) Assimilating candidate data sets and measuring their impact on model performance 
while retaining the model’s original design integrity; (d) Iterating each of the above stages with subsequent candidates, first as a 
single dataset replacement, then with multiple replacements; (e) Performing statistical analyses that measure and validate step-wise 
improvements; and, (f) Devising ways to visualize model outputs in ways that are compelling to environmental and public health 
authorities. This paper presents preliminary results from a project that is replacing parameters in a dust generation model that, itself, 
is driven by ground-based and satellite weather measurements. 
 
 

1. INTRODUCTION 

The Public Health Applications in Remote Sensing (PHAiRS) 
project (Morain and Sprigg, 2005) has three parallel thrusts. The 
first focuses on assimilating satellite observations into the Dust 
Regional Atmospheric Model (DREAM). This model, in turn, is 
driven by the National Centers for Environmental Prediction 
(NCEP)/Eta weather forecasting model. The aim is to: (a) verify 
that advanced satellite image data from current research sensors 
can replace model parameters from traditional non-satellite 
sources, or from earlier (coarser resolution) satellite sources; 
and, (b) validate that parameter replacements lead to more 
reliable model forecasts of dust episodes. 

The second thrust optimizes DREAM model outputs by iterating 
model inputs with a variety of satellite products and assessing 
incremental improvements to the model. The questions of 
greatest interest are: (a) how well, and with what degree of 
sensitivity, can NCEP/Eta combined with DREAM forecast dust 
lifted from a landscape? (b) how well can this combined model 
predict the speed and direction of moving dust clouds? (c) can 
medically sound evidence be generated that couples dust 
episodes to documented respiratory health responses at the 
population level?, and, (d) can areas affected by dust clouds be 
forecast in a timely fashion to alert health officials and 
populations at risk? 

The third thrust is establishing collaborative relations with 
public health authorities to determine whether there are 
statistically valid relationships between dust episodes and 

increased respiratory complaints. This is a difficult effort in the 
United States because public health authorities are distributed 
throughout all levels of government, and because standardized 
record keeping is not mandatory within or among these levels. 

This paper concentrates on activities and results of the first two 
thrusts. 

2. VALIDATE MODEL PERFORMANCE 

2.1 Model Design 

DREAM (Nickovic et al., 2001) has been adapted for use in the 
southwestern United States, and its performance has been tested 
and validated using observed weather patterns and dust events. 
It is a desert dust cycle model developed under the NCEP/Eta 
framework (Janjic, 1984; Mesinger et al., 1988; Janjic, 1994) 
consisting of two modules: an atmospheric simulator, and a dust 
cycle simulator. The atmospheric simulator parameterization 
includes land surface processes, turbulent mixing, convection, 
large-scale precipitation, lateral diffusion and radiation. 

The dust cycle module simulates dust production, advection and 
turbulent diffusion, and dry and wet deposition (Nickovic et al., 
2001; Shao et al., 1993; Georgi, 1986). The module consists of 
three static surface parameters: soil types converted into texture 
classes at 2’x2’ resolution; 10’ resolution vegetation cover; and 
1x1 km resolution topography. Texture categories for sand, silt 
and clay, which determine the physical properties of wind-
blown dust, are assigned according to Cosby et al., (1984). Land 
cover is from the Olson World Ecosystems (OWE) 
classification scheme, which contains 59 categories. 
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Figure 1. Governing Concept for Dust Entrainment, Diffusion, 

and Deposition. 
 
2.2 

                                                                

Baseline Performance  

The baseline version was run for two dust-storm events. One 
occurred on December 8-10, 2003; the other occurred on 
December 15-17, 2003. Both cases were modeled to see how 
well critical meteorological variables were predicted. A 
comparison between the observed and model-generated patterns 
was made to assess: (1) whether the high resolution dust model 
embedded in NCEP/Eta could forecast Southwest meteorology 
accurately; and, (2) whether the dust forecasts matched the 
observed dust measurements.  

The DREAM-modeled meteorological fields were compared 
with measurements and analysis products from 95 surface 
synoptic sites, 663 surface Meteorological Aerodrome Report 
(METAR) sites, and 77 upper-air radiosonde sites. The modeled 
dust field patterns and dust concentrations were compared with 
satellite images, measured visibility distributions, and surface 
PM2.5 and PM10 observations made by the Texas Commission 
on Environmental Quality and the Environmental Protection 
Agency’s (EPA) Air Quality System (AQS). Graphical 
measures, such as pattern comparison, site against site time 
series, vertical profile comparison, and statistical metrics, were 
used. 

NCEP/Eta predicts meteorological patterns quite well1. 
Performance of the baseline DREAM model in the American 
southwest, however, is mixed (Morain and Sprigg., 2005). This 
suggests that DREAM can be improved by assimilating EO data 
that replace selected baseline parameters. 

3. ASSESS EO DATA 

DREAM, was not designed originally to use EO data. 
Compatibility issues therefore arise, among which are: (a) 
measurement units, (b) x,y,z,t resolution, (c) map projection and 
ease of re-projection to fit model requirements, (d) file formats, 
(e) error and error propagation, and (f) validity of the data set as 
a replacement input. Assuming that these issues can be 
overcome, the next steps are to iterate the replacement process 
with different products and resolutions, and to measure the 
incremental improvements in model outputs.  

 

3.1 

3.2 

3.3 

1 In June 2006, the Eta version of NCEP was superseded by a 
non-hydrostatic version, NCEP/NMM  

Assimilation processes are multifaceted and hampered by a 
general absence of metadata. DREAM, for example, was 
designed to use a semi-staggered Arakawa E-grid (Arakawa and 
Lamb, 1977). The E-grid spacing between neighboring mass (h) 
and wind (v) points is 0.33 degree. To assimilate higher 
resolution MODIS land cover data, this spacing had to be 
reduced to 0.11 degree. Vertically, DREAM uses the Eta 
coordinate with step-mountain representation (Mesinger et al., 
1988). The Eta surfaces are quasi-horizontal in both mountain 
and non-mountain areas. From sea level to 100 hPa there are 24 
half-Eta levels. 

Topography / Elevation 

A basic parameter for DREAM is an accurate representation of 
topography. Elevation gives the model a realistic representation 
of the air-land interface. Terrain induced systems include land-
see breeze, mountain valley winds, and forced airflow over and 
around rough terrain. Data from the Shuttle Radar Topography 
Mission (SRTM) are used. The most recent version of this data 
set (released in May 2006) is called SRTM30, the global 30 
arcsec [1km] product. 

Land Cover 

Land Cover is an important variable in DREAM, mainly as a 
data source for identifying dust source areas. Having an 
accurate portrayal of where the dust originates is vital in 
obtaining accurate model results. For the model to be 
temporally accurate, it requires up to date land cover data. 
Currently, DREAM is using the Moderate Resolution Imaging 
Spectroradiometer (MODIS) Land Cover product, or MOD-12. 
MOD-12 identifies 17 classes of land cover derived by the 
International Geosphere-Biosphere Programme (IGBP). Only 
five of these categories are prone to significant dust generation: 
Open Shrublands; Grasslands; Croplands; Urban and Built-Up; 
and, Barren or Sparsely Vegetated land.  

LAI & FPAR 

MODIS Leaf Area Index (LAI) and Fraction of 
Photosynthetically Active Radiation (FPAR), MOD-15, has also 
been investigated as a potential identifier of dust source areas. 
LAI measures the one-sided leaf area per unit ground area of 
vegetation. FPAR measures absorbed wavelengths between 0.4 
– 0.7 microns, which are the photosynthetically active 
wavelengths (Knyazikhin et al., 1999). Dust source areas should 
have low, or no, LAI or FPAR response. However, the 
categories having the lowest responses represent six MOD-12 
cover types, of which only three are found in semi-arid and arid 
environments:  Unclassified; Urban and built-up areas; and, 
Barren, desert, or very sparsely vegetated. These three 
categories seem to match potential dust source areas more 
accurately than the corresponding MOD-12 Land Cover 
categories. 

Since the FPAR algorithm requires MOD-12 as an input, it may 
be possible to use fill class 253 to seasonally update MOD-12 in 
the DREAM model. This idea has been tested at White Sands 
National Monument (WSNM), NM. It was hypothesized that 
wherever value 253 occurred, it could be substituted for 
equivalent MOD-12 pixels to help DREAM identify potential 
dust sources. The FPAR fill value recognized the slightly 
vegetated transitional areas and only classified the barren areas 
as "desert." Errors of omission and commission in MOD-12 
over WSNM suggest that the relationship is much more 
complicated and must be further assessed. fill values are not 
updated routinely along with non-fill classes. 
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Visual comparisons of MOD-12 and MOD-15 with commercial 
satellite products having ≤ 1m resolution over sites in 
southeastern CA, AZ, NM, and west TX suggest that MOD-12 
overestimates, and MOD-15 underestimates, the area of possible 
dust generation. Moreover the MOD-12 product seems to 
identify small (~1km) dust source areas where there may be 
none, especially in eastern NM and west TX. Both products 
seem to show credible patterns, especially in the larger dust 
source areas. Another advantage to considering MOD-15 
instead of MOD-12 is its more frequent refresh (every 8 days, if 
the fill values are also updated). MOD-12 was last updated in 
2003. 
 
3.4 

3.5 
Soil Moisture 

The less water held in a soil the more prone it is to wind erosion 
and dust entrainment. According to Fecan et al. (1999), 
retention of soil water consists of two factors: (a) molecular 
adsorption on the surface of the soil grain; and (b) inter-particle 
capillary forces. The latter of these determines whether dust will 
be lifted from a surface at a given wind speed. As soil moisture 
is increased, the threshold wind velocity is also increased, thus 
reducing the amount of dust injected into the atmosphere 
(Nickovic et al., 2001). 

The Advanced Microwave Scanning Radiometer (AMSR-E) 
measures passive microwave emissions as a surrogate for soil 
moisture in the surface few centimetres. However, there are 
several challenges to overcome before data can be assimilated 
into DREAM; (a) the effective data footprint is almost 70km, 
while the model outputs are aiming toward finer resolution; (b) 
AMSR-E data are available in Hierarchical Data Format (HDF), 
while DREAM uses an ASCII GRID format; (c) AMSR-E data 
are formatted to an Equal-Area Scalable Earth Grid or EASE-
Grid; (d) there are serious data voids in areas of dense 
vegetation (high LAI) and under snow cover; and, (e) there are 
measurement errors associated with sampling depth and 
vegetation density. 

The HDF format stores much information in a single data file. 
Specific data may be extracted from the file, but special 
software is required that is not available through open sources. 
HDF-EOS and GeoTIFF (HEG) tools are available from various 
data distribution websites, and there are commercial off-the-
shelf (COTS) applications such as ENVI and ERDAS that will 
also read this file format. In sum, AMSR-E data processing 
requires several steps to make the data format compatible with 
DREAM. Following these steps, the data must then be re-
projected. There are several tools available from the National 
Snow and Ice Data Center (NSIDC), but the processes are not 
straight forward. 

The project team is addressing these assimilation issues. It 
believes AMSR-E data may be useful as a DREAM input 
despite its relatively coarse spatial resolution, data gaps, and 
accuracy. It is, after all, the best contiguous data product 
currently available for this most important parameter. Moreover, 
one could argue that recent rains falling on bare or sparsely 
vegetated surfaces in arid and semi-arid areas would provide 
enough soil moisture to retard the entrainment of dust for a day 
or two depending on soil/air boundary temperatures, surface 
wind speeds, and duration of wind. In DREAM, there is a 
module called the land surface model (LSM) that treats 
interactions among soil, vegetation, and atmosphere. LSM 
simulates soil moisture and soil temperature variations based on 
water and heat exchanges at the interface between land and 
atmosphere, including snow and vegetated areas. When 

precipitation occurs below 0° C, the model counts the 
precipitation as snow and simulates sublimation and melting 
processes based on water and heat exchanges at the air/land 
boundary. 

In terms of assimilating AMSR-E soil moisture data, there may 
be several alternatives. Ultimately the decision will be based on 
data availability and the quality of those data. The project’s 
strategy is to retrieve the best data available and to develop 
ways to: (a) augment with other data sources in areas where 
there are no good measurements; (b) expand with additional 
satellites and data products; and, (c) as modelling improvements 
continue, assimilate and evaluate the most promising products 
for improved model performance. 

Aerodynamic Roughness 

As air flows over a surface, it is disrupted by the topography of 
that surface. This disruption is related to the aerodynamic 
roughness length, or z0, of the surface. This length is different 
for various surfaces or objects. For vegetated surfaces, z0 has a 
1:1 relationship with the RMS height of vegetation at the 
canopy top (Saatchi et al., 2001). 

In DREAM, surface roughness has been pre-defined using 12 
SSiB (Simplified Simple Biosphere Model) land cover types 
and topography. Measurements made by EO sensors would be a 
more accurate way to determine this factor. There are 
experimental ways of determining z0 using Synthetic Aperture 
Radar (SAR) technology. Multiple studies and papers are 
devoted to this topic. Unfortunately, there are no directly usable 
SAR roughness length products at this time. 

For PHAiRS, a look-up table (LUT) was developed as the way 
to determine surface roughness. A routine developed at NASA’s 
Stennis Space Center merges aerodynamic roughness length 
values to MOD-12 Land Cover categories. Table 1 shows the 
values for categories being most prone to dust entrainment.  

 
DN Land Cover Category Z0 Range (m) Default z0
8 Woody Savanna 0.10 - 0.20 0.15 
9 Savanna 0.03 - 0.10 0.06 
10 Grassland 0.03 - 0.07 0.05 
12 Cropland 0.04 - 0.18 0.11 
14 Crops/Natural Mosaic 0.10 - 0.30 0.20 
16 Barren/Sparse Vegetation 0.00 - 0.01 0.01 
253 Fill 0.00 0.00 

TABLE I.   AERODYNAMIC ROUGHNESS LENGTHS LINKED TO MODIS 
LAND COVER CATEGORIES (BLONSKI ET AL., 2005) 

4. ASSIMILATE CANDIDATE EO DATA 

The above products were prepared for assimilation into 
DREAM. These were intended to replace equivalent surface 
parameters in the baseline version to achieve finer landscape 
resolution and more dynamic temporal resolution. They include: 
(a) land cover from the MODs-12, and -15); (b) SRTM 3 arcsec 
(90m) resampled to 30 arcsec (1km); (c) surface roughness 
length, zo, from Mod-12 land cover; and (d) soil moisture from 
AMSR-E. The orginal baseline parameters and the EO 
replacement parameters are shown in Table 2. 
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Baseline Model Parameters EO Data 
Land Cover: Olson World 
Ecosystem 10-min. (19km) 
Res 

MOD-12 1km resolu-
tion 

Elevation: USGS 1km terrain 
data 

SRTM-3 arcsec (90)m 
terrain data* resam-
pled to 30 arcsec 
(1km) 

Aerodynamic roughness 
length: predicted using 12 
SSiB land cover types 

Look-up table linked 
to MOD-12 land 
cover  

Dust source areas FPAR “Fill” class 
254-255 

Soil Moisture: simulated us-
ing a land surface model 

AMSR-E  

TABLE II.  DATA SETS ASSIMILATED INTO DREAM : * SRTM 3 
ARCSEC WILL BE REPLACED BY SRTM 30 ARCSEC IN FUTURE MODEL 

RUNS 

The sequence of model runs with assimilated EO data is given 
in Table 3. Mod-12 land cover has been a consistent parameter 
replacement, followed by resampled SRTM-90, z0, soil 
moisture, and FPAR. To date, DREAM(v.1) has been 
configured to simulate the two dust storms for December 2003. 
The team is now developing a 2-3 year running history of 
meteorological parameters (2003/4-2006 and beyond) to 
perform statistical analyses on DREAM’s performance under 
day-to-day conditions (v.1A). Yet a third version of the model 
(v.2) will be configured to run with NCEP/NMM, a new non-
hydrostatic version replacing the hydrostatic NCEP/Eta. 

Run # MOD-12 SRTM- 
30 

z0 

(m) 
FPAR AMSR-

E 
Baseline No assimilated EO data 
Run 2c      
Run 4a      
Run 5a      
Run 5b      
Run 6a      
Run 10a      
Run 15a      

TABLE III.  MODEL RUN SEQUENCE AS OF MAY 2006 

5. ITERATE CANDIDATES 

Given the transition to NCEP/NMM, the re-adaptation of 
DREAM to this parent model, and the versioning of candidate 
replacement parameters within DREAM, the team has created 
an experimental design and naming convention for comparing 
the model results. 

Conceptually, the design is analogous to a rack of digital layers 
each one representing a different EO measurement needed by 
DREAM. The task is to systematically remove trays from the 
baseline design of the model and replace them with “fresher” 
trays of presumed higher value to create an ultimate rack of 
highest value. To do this for six parameter replacements 
requires 41-model runs for parameters taken (1, 2, 3…6) at a 
time, excluding duplicates. Statistical and analytical procedures 
will be performed to assess which of the model iterations 
provides the greatest improvements as validated by independent 
ground-based observation networks. 

 

6. VALIDATE IMPROVEMENTS 

If one compares model results before and after MOD-12 data 
were assimilation, it appears that surface weather patterns (sea 
level pressure, 500 hPa potential height, and temperature) match 
well with the observed weather patterns. As hoped for tThis 
suggests that finer resolution land cover data had little 
noticeable affect on the performance of the atmospheric 
simulator. The primary difference between the two sets of 
model results is seen in sea level pressure fields, although these 
differences did not affect the overall pattern. 

Similarly, the upper-air fields were not affected by the model 
data set replacements. Among the vertical profiles for wind, 
temperature, and specific humidity, only slight differences were 
seen after data assimilation, except for differences in the near-
ground wind speed. This seems reasonable since the OWE land 
cover data used for the “before” model run had much coarser 
spatial resolution (10’x10’) than the run after assimilating MOD-
12 data (1x1km). Even though both data sets result in good 
model performance, finer resolution land cover, combined with 
topography’s influence on surface wind speeds should have an 
effect on z0, soil moisture status, and the ability of wind to 
entrain dust. 

The performance statistics of the modeled surface 
meteorological variables using MOD-12 data showed that 
model performance in 2m (height above surface) temperature 
improved by comparison to OWE results. The model 
performance for 10m wind speed and direction showed slight 
improvement using assimilated data. 

Table 4 lists the performance statistics for modelled surface 
temperature and wind. The biggest differences between results 
from before and after MOD-12 data assimilation are for 2m 
temperature. The agreement index after data assimilation was 
0.95, in comparison with 0.71 obtained using the original 
DREAM parameters This is a significant model improvement. 
The mean bias and mean error after parameter replacement are 
less than those for the baseline parameters. 

TABLE IV.  DREAM PERFORMANCE BEFORE AND AFTER EO DATA 
ASSIMILATION 

Metrics 
Wind 
Speed 
(m/s) 

Wind 
Direction 

(°) 

Temp 
(K) Definition 

Mean Obs. 5.53 231.40 276.74 ∑
=

N

i
iO

N 1

1  

Mean 
Mod. 

4.65 
4.37 

226.60 
230.38 

275.56 
277.48 ∑

=

N

i
iM

N 1

1  

Mean Bias -0.88 
-1.16 

-4.80 
-1.02 

-1.20 
0.72 

( )∑
=

−
N

i
ii OM

N 1

1  

Mean 
Error 

1.97 
2.03 

51.76 
47.85 

4.09 
2.67 ∑

=
−

N

i
ii OM

N 1

1  

Agreement 
Index 

0.74 
0.75 

0.74 
0.76 

0.71 
0.95 

( )

∑

∑

=

=

⎟
⎠
⎞⎜

⎝
⎛ −+−

−
− N

i
ii

N

i
ii

OOOM

OM

1

1

2

1  

Italic values are before EO data assimilation; other values are 
after assimilation. For the equations M = modeled; O = ob-
served 
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The agreement index for 10m wind direction and speed was 
slightly better after MOD-12 data set replacement, but the mean 
bias and mean error were actually slightly higher than those 
obtained using the original DREAM parameters. 

Figure 2 visualizes the observed and modelled patterns of dust 
for the storm of December 15-16, 2003. The observed pattern is 
extrapolated from data obtained by a sparse network of ground 
reporting air quality stations. The modelled pattern shows more 
detail but still compares favourably with those same ground 
observations. 

 

 
 
Figure 2. Comparison of DREAM Output: (above) without EO 

data assimilated, and (below) with EO data assimilated 
 

7. REFERENCES 

Arakawa, A., and V.R. Lamb, 1977. Computational design of 
the basic dynamical processes of the UCLA general circulation 
model. Methods in Computational Physics, 17, pp. 173-265.  

Blonski, S., D. Holland, and V. Henderson, 2005. NASA soil 
moisture data products and their incorporation in DREAM. 
Contractor Report to UNM Earth Data Analysis Center. 

Fecan, F., B., Marticorena, and G. Bergametti, 1999. 
Parametrization of the increase of the aeolian erosion threshold 
wind friction velocity due to soil moisture for arid and semi-arid 
areas. Annals Geophysicae, 17, pp. 149-157. 

Georgi, F., 1986. A particle dry-deposition parameterization 
scheme for use in tracer transport models. Journal of 
Geophysical Research, 91, pp. 9794-9806. 

Cosby, B.J., G.M. Hornberger, R.B. Clapp, and T.R. Ginn, 
1984. A statistical exploration of the relationships of soil 
moisture characteristics to the physical properties of soils. 
Water Resources Research, 20, pp. 682-690. 

Janjic, Z.I., 1984. Non-linear advection schemes and energy 
cascade on semi-staggered grids. Monthly Weather Review, 118, 
pp. 1234-1245. 

Janjic, Z.I., 1994. The step-mountain coordinate model: Further 
developments of the convection, viscous sublayer and 
turbulence closure schemes, Monthly Weather Review, 122, pp. 
927-945. 

Knyazikhin, Y., J. Glassy, J.L. Privette, Y. Tian, A. Lotsch, Y. 
Zhang, Y. Wang, J.T. Morisette, P. Votava, R.B. Myneni, R.R. 
Nemani, and S.W. Running, 1999. MODIS leaf area index 
(LAI) and fraction of photosynthetically active radiation 
absorbed by vegetation (FPAR) product (MOD15) algorithm 
theoretical basis document. Version 4.0. 
http://eospso.gsfc.nasa.gov/atbd/modistables.html (accessed 
May 23, 2006)  

Mesinger, F., Z.I. Janjic, S. Nickovic, D. Gavrilov, and D.G. 
Deaven, 1988. The step-mountain coordinate: Model description 
and performance for cases of alpine lee cyclogenesis and for a 
case of an Appalachian redevelopment, Monthly Weather 
Review, 116, pp. 1493-1518. 

Morain, S. and W. Sprigg, 2005. Initial benchmark report for 
public health. NASA Cooperative Agreement NNS04AA19A. 
Sep. 30. 36 pages. 

Nickovic, S., G. Kallos, A. Papadopoulos, and O. Kakaliagou, 
2001. A Model for prediction of desert dust cycle in the 
atmosphere, Journ. Geophys. Res., 106(D16), pp. 18,113-
18,129. 

Saatchi, S., E. Rodriguez, S. Denning, and R. Dubayah, 2001. 
Estimation of aerodynamic roughness from synergistic use of 
satellite imagery, Proceeding of IGARSS, Sydney, Australia. 

Shao, Y., M.R. Raupach, and P.A. Findlater, 1993. Effect of 
saltation bombardment on the entrainment of dust by wind, 
Journal of Geophysical Research, 98, pp. 12719-12726. 

 
8.  ACKNOWLEDGMENTS 

This research was funded by the National Aeronautics and 
Space Administration under Agreement NNSO4AA19A. The 
author wishes to thank the PHAiRS Project Team for their many 
contribution, in particular Brian Barberis, and Dazhong Yin 
(University of Arizona Department of Atmospheric Sciences), 
and Gary Sanchez (University of New Mexico Earth Data 
Analysis Center). 

 
 

http://eospso.gsfc.nasa.gov/atbd/modistables.html

	INTRODUCTION
	VALIDATE MODEL PERFORMANCE
	Model Design
	Baseline Performance

	ASSESS EO DATA
	Topography / Elevation
	Land Cover
	LAI & FPAR
	Soil Moisture
	Aerodynamic Roughness

	ASSIMILATE CANDIDATE EO DATA
	ITERATE CANDIDATES
	VALIDATE IMPROVEMENTS
	REFERENCES
	ACKNOWLEDGMENTS

